基于人工智能的急性髓性白血病预测模型,使用真实生活数据:DATAML 登记研究

IF 2.1 4区 医学 Q3 HEMATOLOGY
Ibrahim Didi , Jean-Marc Alliot , Pierre-Yves Dumas , François Vergez , Suzanne Tavitian , Laëtitia Largeaud , Audrey Bidet , Jean-Baptiste Rieu , Isabelle Luquet , Nicolas Lechevalier , Eric Delabesse , Audrey Sarry , Anne-Charlotte De Grande , Emilie Bérard , Arnaud Pigneux , Christian Récher , David Simoncini , Sarah Bertoli
{"title":"基于人工智能的急性髓性白血病预测模型,使用真实生活数据:DATAML 登记研究","authors":"Ibrahim Didi ,&nbsp;Jean-Marc Alliot ,&nbsp;Pierre-Yves Dumas ,&nbsp;François Vergez ,&nbsp;Suzanne Tavitian ,&nbsp;Laëtitia Largeaud ,&nbsp;Audrey Bidet ,&nbsp;Jean-Baptiste Rieu ,&nbsp;Isabelle Luquet ,&nbsp;Nicolas Lechevalier ,&nbsp;Eric Delabesse ,&nbsp;Audrey Sarry ,&nbsp;Anne-Charlotte De Grande ,&nbsp;Emilie Bérard ,&nbsp;Arnaud Pigneux ,&nbsp;Christian Récher ,&nbsp;David Simoncini ,&nbsp;Sarah Bertoli","doi":"10.1016/j.leukres.2024.107437","DOIUrl":null,"url":null,"abstract":"<div><p>We designed artificial intelligence-based prediction models (AIPM) using 52 diagnostic variables from 3687 patients included in the DATAML registry treated with intensive chemotherapy (IC, N = 3030) or azacitidine (AZA, N = 657) for an acute myeloid leukemia (AML). A neural network called multilayer perceptron (MLP) achieved a prediction accuracy for overall survival (OS) of 68.5% and 62.1% in the IC and AZA cohorts, respectively. The Boruta algorithm could select the most important variables for prediction without decreasing accuracy. Thirteen features were retained with this algorithm in the IC cohort: age, cytogenetic risk, white blood cells count, LDH, platelet count, albumin, MPO expression, mean corpuscular volume, CD117 expression, <em>NPM1</em> mutation, AML status (de novo or secondary), multilineage dysplasia and <em>ASXL1</em> mutation; and 7 variables in the AZA cohort: blood blasts, serum ferritin, CD56, LDH, hemoglobin, CD13 and disseminated intravascular coagulation (DIC). We believe that AIPM could help hematologists to deal with the huge amount of data available at diagnosis, enabling them to have an OS estimation and guide their treatment choice. Our registry-based AIPM could offer a large real-life dataset with original and exhaustive features and select a low number of diagnostic features with an equivalent accuracy of prediction, more appropriate to routine practice.</p></div>","PeriodicalId":18051,"journal":{"name":"Leukemia research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0145212624000031/pdfft?md5=adf90171fc7d27b888f91f850bb939ac&pid=1-s2.0-S0145212624000031-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-based prediction models for acute myeloid leukemia using real-life data: A DATAML registry study\",\"authors\":\"Ibrahim Didi ,&nbsp;Jean-Marc Alliot ,&nbsp;Pierre-Yves Dumas ,&nbsp;François Vergez ,&nbsp;Suzanne Tavitian ,&nbsp;Laëtitia Largeaud ,&nbsp;Audrey Bidet ,&nbsp;Jean-Baptiste Rieu ,&nbsp;Isabelle Luquet ,&nbsp;Nicolas Lechevalier ,&nbsp;Eric Delabesse ,&nbsp;Audrey Sarry ,&nbsp;Anne-Charlotte De Grande ,&nbsp;Emilie Bérard ,&nbsp;Arnaud Pigneux ,&nbsp;Christian Récher ,&nbsp;David Simoncini ,&nbsp;Sarah Bertoli\",\"doi\":\"10.1016/j.leukres.2024.107437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We designed artificial intelligence-based prediction models (AIPM) using 52 diagnostic variables from 3687 patients included in the DATAML registry treated with intensive chemotherapy (IC, N = 3030) or azacitidine (AZA, N = 657) for an acute myeloid leukemia (AML). A neural network called multilayer perceptron (MLP) achieved a prediction accuracy for overall survival (OS) of 68.5% and 62.1% in the IC and AZA cohorts, respectively. The Boruta algorithm could select the most important variables for prediction without decreasing accuracy. Thirteen features were retained with this algorithm in the IC cohort: age, cytogenetic risk, white blood cells count, LDH, platelet count, albumin, MPO expression, mean corpuscular volume, CD117 expression, <em>NPM1</em> mutation, AML status (de novo or secondary), multilineage dysplasia and <em>ASXL1</em> mutation; and 7 variables in the AZA cohort: blood blasts, serum ferritin, CD56, LDH, hemoglobin, CD13 and disseminated intravascular coagulation (DIC). We believe that AIPM could help hematologists to deal with the huge amount of data available at diagnosis, enabling them to have an OS estimation and guide their treatment choice. Our registry-based AIPM could offer a large real-life dataset with original and exhaustive features and select a low number of diagnostic features with an equivalent accuracy of prediction, more appropriate to routine practice.</p></div>\",\"PeriodicalId\":18051,\"journal\":{\"name\":\"Leukemia research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0145212624000031/pdfft?md5=adf90171fc7d27b888f91f850bb939ac&pid=1-s2.0-S0145212624000031-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leukemia research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0145212624000031\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukemia research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0145212624000031","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们使用52个诊断变量设计了基于人工智能的预测模型(AIPM),这些诊断变量来自DATAML登记的3687名急性髓性白血病(AML)强化化疗(IC,3030人)或阿扎胞苷(AZA,657人)患者。一种名为多层感知器(MLP)的神经网络在IC和AZA组别中的总生存期(OS)预测准确率分别为68.5%和62.1%。Boruta算法可以选择最重要的变量进行预测,而不会降低准确率。在IC队列中,该算法保留了13个特征:年龄、细胞遗传风险、白细胞计数、LDH、血小板计数、白蛋白、MPO表达、平均血球容积、CD117表达、NPM1突变、AML状态(新生或继发)、多线发育不良和ASXL1突变;在AZA队列中保留了7个变量:血细胞、血清铁蛋白、CD56、LDH、血红蛋白、CD13 和弥散性血管内凝血(DIC)。我们相信,AIPM 可以帮助血液科医生处理诊断时的大量数据,使他们能够对 OS 进行估计并指导治疗选择。我们基于登记的 AIPM 可以提供一个具有原始和详尽特征的大型真实数据集,并选择数量较少、预测准确性相当的诊断特征,更适合常规实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial intelligence-based prediction models for acute myeloid leukemia using real-life data: A DATAML registry study

Artificial intelligence-based prediction models for acute myeloid leukemia using real-life data: A DATAML registry study

We designed artificial intelligence-based prediction models (AIPM) using 52 diagnostic variables from 3687 patients included in the DATAML registry treated with intensive chemotherapy (IC, N = 3030) or azacitidine (AZA, N = 657) for an acute myeloid leukemia (AML). A neural network called multilayer perceptron (MLP) achieved a prediction accuracy for overall survival (OS) of 68.5% and 62.1% in the IC and AZA cohorts, respectively. The Boruta algorithm could select the most important variables for prediction without decreasing accuracy. Thirteen features were retained with this algorithm in the IC cohort: age, cytogenetic risk, white blood cells count, LDH, platelet count, albumin, MPO expression, mean corpuscular volume, CD117 expression, NPM1 mutation, AML status (de novo or secondary), multilineage dysplasia and ASXL1 mutation; and 7 variables in the AZA cohort: blood blasts, serum ferritin, CD56, LDH, hemoglobin, CD13 and disseminated intravascular coagulation (DIC). We believe that AIPM could help hematologists to deal with the huge amount of data available at diagnosis, enabling them to have an OS estimation and guide their treatment choice. Our registry-based AIPM could offer a large real-life dataset with original and exhaustive features and select a low number of diagnostic features with an equivalent accuracy of prediction, more appropriate to routine practice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Leukemia research
Leukemia research 医学-血液学
CiteScore
4.00
自引率
3.70%
发文量
259
审稿时长
1 months
期刊介绍: Leukemia Research an international journal which brings comprehensive and current information to all health care professionals involved in basic and applied clinical research in hematological malignancies. The editors encourage the submission of articles relevant to hematological malignancies. The Journal scope includes reporting studies of cellular and molecular biology, genetics, immunology, epidemiology, clinical evaluation, and therapy of these diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信