基于碲纳米线阵列的晶体管的性能潜力:量子传输研究

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ning Yang, Jing Guo
{"title":"基于碲纳米线阵列的晶体管的性能潜力:量子传输研究","authors":"Ning Yang,&nbsp;Jing Guo","doi":"10.1016/j.sse.2024.108859","DOIUrl":null,"url":null,"abstract":"<div><p>Low-dimensional nanomaterials provide promising material platforms for aggressively scaled transistor technologies. We assess the performance potential of transistors based on an array of Tellurium nanowires (TNWs), by parameterizing a machine-learning (ML) tight-binding model with quantum transport device simulations. It has been shown that a transistor based on a parallel array of carbon nanotubes (CNTs) can have excellent on-state performance, but the small bandgap limits the transistor scalability and off-state performance. Our results indicate that compared to the CNT array FETs, the TNW array FETs have significantly suppressed ambipolar transport and improved subthreshold characteristics. The TNW array FET has the potential to achieve a near-ideal subthreshold swing (SS) close to 60 mV/dec, a very large on–off ratio (&gt;10<sup>9</sup>), and low source-drain leakage current at a 10 nm-scale channel length, due to its excellent gate electrostatics with a gate-all-around (GAA) structure, larger band gap and reduced quantum–mechanical tunneling. The TNW array FET also shows excellent scalability with a SS below 100 mV/dec when the channel length is further scaled down to 5 nm. Its larger bandgap and heavier effective mass significantly reduce quantum tunneling. This mechanism contributes to improved subthreshold and lower leakage but also highlights the need to develop low Schottky barrier contacts for TNWs.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance potential of transistors based on tellurium nanowire arrays: A quantum transport study\",\"authors\":\"Ning Yang,&nbsp;Jing Guo\",\"doi\":\"10.1016/j.sse.2024.108859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Low-dimensional nanomaterials provide promising material platforms for aggressively scaled transistor technologies. We assess the performance potential of transistors based on an array of Tellurium nanowires (TNWs), by parameterizing a machine-learning (ML) tight-binding model with quantum transport device simulations. It has been shown that a transistor based on a parallel array of carbon nanotubes (CNTs) can have excellent on-state performance, but the small bandgap limits the transistor scalability and off-state performance. Our results indicate that compared to the CNT array FETs, the TNW array FETs have significantly suppressed ambipolar transport and improved subthreshold characteristics. The TNW array FET has the potential to achieve a near-ideal subthreshold swing (SS) close to 60 mV/dec, a very large on–off ratio (&gt;10<sup>9</sup>), and low source-drain leakage current at a 10 nm-scale channel length, due to its excellent gate electrostatics with a gate-all-around (GAA) structure, larger band gap and reduced quantum–mechanical tunneling. The TNW array FET also shows excellent scalability with a SS below 100 mV/dec when the channel length is further scaled down to 5 nm. Its larger bandgap and heavier effective mass significantly reduce quantum tunneling. This mechanism contributes to improved subthreshold and lower leakage but also highlights the need to develop low Schottky barrier contacts for TNWs.</p></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003811012400008X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003811012400008X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

低维纳米材料为大规模晶体管技术提供了前景广阔的材料平台。我们通过对机器学习(ML)紧密结合模型与量子输运器件模拟进行参数化,评估了基于碲纳米线(TNWs)阵列的晶体管的性能潜力。已有研究表明,基于碳纳米管(CNTs)平行阵列的晶体管具有出色的通态性能,但小带隙限制了晶体管的可扩展性和离态性能。我们的研究结果表明,与 CNT 阵列场效应晶体管相比,TNW 阵列场效应晶体管能显著抑制伏极传输,并改善亚阈值特性。TNW 阵列场效应晶体管具有接近理想的次阈值摆幅 (SS),接近 60 mV/dec,具有非常大的导通-关断比 (>109),并且在 10 nm 尺寸的沟道长度上具有较低的源漏电流,这归功于其具有栅极全环绕 (GAA) 结构的出色栅极静电特性、较大的带隙和较低的量子机械隧穿。TNW 阵列场效应晶体管还具有出色的可扩展性,当沟道长度进一步缩小到 5 纳米时,其 SS 值低于 100 mV/dec。更大的带隙和更重的有效质量大大减少了量子隧穿。这种机制有助于改善亚阈值和降低漏电,但也凸显了为 TNW 开发低肖特基势垒触点的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance potential of transistors based on tellurium nanowire arrays: A quantum transport study

Low-dimensional nanomaterials provide promising material platforms for aggressively scaled transistor technologies. We assess the performance potential of transistors based on an array of Tellurium nanowires (TNWs), by parameterizing a machine-learning (ML) tight-binding model with quantum transport device simulations. It has been shown that a transistor based on a parallel array of carbon nanotubes (CNTs) can have excellent on-state performance, but the small bandgap limits the transistor scalability and off-state performance. Our results indicate that compared to the CNT array FETs, the TNW array FETs have significantly suppressed ambipolar transport and improved subthreshold characteristics. The TNW array FET has the potential to achieve a near-ideal subthreshold swing (SS) close to 60 mV/dec, a very large on–off ratio (>109), and low source-drain leakage current at a 10 nm-scale channel length, due to its excellent gate electrostatics with a gate-all-around (GAA) structure, larger band gap and reduced quantum–mechanical tunneling. The TNW array FET also shows excellent scalability with a SS below 100 mV/dec when the channel length is further scaled down to 5 nm. Its larger bandgap and heavier effective mass significantly reduce quantum tunneling. This mechanism contributes to improved subthreshold and lower leakage but also highlights the need to develop low Schottky barrier contacts for TNWs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信