R Betshrine Rachel, H Khanna Nehemiah, Vaibhav Kumar Singh, Rebecca Mercy Victoria Manoharan
{"title":"利用鲸鱼优化算法、支持向量机和多层感知器从 CT 切片诊断 Covid-19。","authors":"R Betshrine Rachel, H Khanna Nehemiah, Vaibhav Kumar Singh, Rebecca Mercy Victoria Manoharan","doi":"10.3233/XST-230196","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The coronavirus disease 2019 is a serious and highly contagious disease caused by infection with a newly discovered virus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).</p><p><strong>Objective: </strong>A Computer Aided Diagnosis (CAD) system to assist physicians to diagnose Covid-19 from chest Computed Tomography (CT) slices is modelled and experimented.</p><p><strong>Methods: </strong>The lung tissues are segmented using Otsu's thresholding method. The Covid-19 lesions have been annotated as the Regions of Interest (ROIs), which is followed by texture and shape extraction. The obtained features are stored as feature vectors and split into 80:20 train and test sets. To choose the optimal features, Whale Optimization Algorithm (WOA) with Support Vector Machine (SVM) classifier's accuracy is employed. A Multi-Layer Perceptron (MLP) classifier is trained to perform classification with the selected features.</p><p><strong>Results: </strong>Comparative experimentations of the proposed system with existing eight benchmark Machine Learning classifiers using real-time dataset demonstrates that the proposed system with 88.94% accuracy outperforms the benchmark classifier's results. Statistical analysis namely, Friedman test, Mann Whitney U test and Kendall's Rank Correlation Coefficient Test has been performed which indicates that the proposed method has a significant impact on the novel dataset considered.</p><p><strong>Conclusion: </strong>The MLP classifier's accuracy without feature selection yielded 80.40%, whereas with feature selection using WOA, it yielded 88.94%.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"253-269"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnosis of Covid-19 from CT slices using Whale Optimization Algorithm, Support Vector Machine and Multi-Layer Perceptron.\",\"authors\":\"R Betshrine Rachel, H Khanna Nehemiah, Vaibhav Kumar Singh, Rebecca Mercy Victoria Manoharan\",\"doi\":\"10.3233/XST-230196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The coronavirus disease 2019 is a serious and highly contagious disease caused by infection with a newly discovered virus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).</p><p><strong>Objective: </strong>A Computer Aided Diagnosis (CAD) system to assist physicians to diagnose Covid-19 from chest Computed Tomography (CT) slices is modelled and experimented.</p><p><strong>Methods: </strong>The lung tissues are segmented using Otsu's thresholding method. The Covid-19 lesions have been annotated as the Regions of Interest (ROIs), which is followed by texture and shape extraction. The obtained features are stored as feature vectors and split into 80:20 train and test sets. To choose the optimal features, Whale Optimization Algorithm (WOA) with Support Vector Machine (SVM) classifier's accuracy is employed. A Multi-Layer Perceptron (MLP) classifier is trained to perform classification with the selected features.</p><p><strong>Results: </strong>Comparative experimentations of the proposed system with existing eight benchmark Machine Learning classifiers using real-time dataset demonstrates that the proposed system with 88.94% accuracy outperforms the benchmark classifier's results. Statistical analysis namely, Friedman test, Mann Whitney U test and Kendall's Rank Correlation Coefficient Test has been performed which indicates that the proposed method has a significant impact on the novel dataset considered.</p><p><strong>Conclusion: </strong>The MLP classifier's accuracy without feature selection yielded 80.40%, whereas with feature selection using WOA, it yielded 88.94%.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"253-269\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/XST-230196\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-230196","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Diagnosis of Covid-19 from CT slices using Whale Optimization Algorithm, Support Vector Machine and Multi-Layer Perceptron.
Background: The coronavirus disease 2019 is a serious and highly contagious disease caused by infection with a newly discovered virus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Objective: A Computer Aided Diagnosis (CAD) system to assist physicians to diagnose Covid-19 from chest Computed Tomography (CT) slices is modelled and experimented.
Methods: The lung tissues are segmented using Otsu's thresholding method. The Covid-19 lesions have been annotated as the Regions of Interest (ROIs), which is followed by texture and shape extraction. The obtained features are stored as feature vectors and split into 80:20 train and test sets. To choose the optimal features, Whale Optimization Algorithm (WOA) with Support Vector Machine (SVM) classifier's accuracy is employed. A Multi-Layer Perceptron (MLP) classifier is trained to perform classification with the selected features.
Results: Comparative experimentations of the proposed system with existing eight benchmark Machine Learning classifiers using real-time dataset demonstrates that the proposed system with 88.94% accuracy outperforms the benchmark classifier's results. Statistical analysis namely, Friedman test, Mann Whitney U test and Kendall's Rank Correlation Coefficient Test has been performed which indicates that the proposed method has a significant impact on the novel dataset considered.
Conclusion: The MLP classifier's accuracy without feature selection yielded 80.40%, whereas with feature selection using WOA, it yielded 88.94%.
期刊介绍:
Research areas within the scope of the journal include:
Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants
X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional
Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics
Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes