具有网格结构的快速响应时间气体电离室探测器。

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Jiahao Chang, Chaoyang Zhu, Yuanpeng Song, Zhentao Wang
{"title":"具有网格结构的快速响应时间气体电离室探测器。","authors":"Jiahao Chang, Chaoyang Zhu, Yuanpeng Song, Zhentao Wang","doi":"10.3233/XST-230219","DOIUrl":null,"url":null,"abstract":"<p><p>The time response characteristic of the detector is crucial in radiation imaging systems. Unfortunately, existing parallel plate ionization chamber detectors have a slow response time, which leads to blurry radiation images. To enhance imaging quality, the electrode structure of the detector must be modified to reduce the response time. This paper proposes a gas detector with a grid structure that has a fast response time. In this study, the detector electrostatic field was calculated using COMSOL, while Garfield++ was utilized to simulate the detector's output signal. To validate the accuracy of simulation results, the experimental ionization chamber was tested on the experimental platform. The results revealed that the average electric field intensity in the induced region of the grid detector was increased by at least 33%. The detector response time was reduced to 27% -38% of that of the parallel plate detector, while the sensitivity of the detector was only reduced by 10%. Therefore, incorporating a grid structure within the parallel plate detector can significantly improve the time response characteristics of the gas detector, providing an insight for future detector enhancements.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"339-354"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast response time gas ionization chamber detector with a grid structure.\",\"authors\":\"Jiahao Chang, Chaoyang Zhu, Yuanpeng Song, Zhentao Wang\",\"doi\":\"10.3233/XST-230219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The time response characteristic of the detector is crucial in radiation imaging systems. Unfortunately, existing parallel plate ionization chamber detectors have a slow response time, which leads to blurry radiation images. To enhance imaging quality, the electrode structure of the detector must be modified to reduce the response time. This paper proposes a gas detector with a grid structure that has a fast response time. In this study, the detector electrostatic field was calculated using COMSOL, while Garfield++ was utilized to simulate the detector's output signal. To validate the accuracy of simulation results, the experimental ionization chamber was tested on the experimental platform. The results revealed that the average electric field intensity in the induced region of the grid detector was increased by at least 33%. The detector response time was reduced to 27% -38% of that of the parallel plate detector, while the sensitivity of the detector was only reduced by 10%. Therefore, incorporating a grid structure within the parallel plate detector can significantly improve the time response characteristics of the gas detector, providing an insight for future detector enhancements.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"339-354\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/XST-230219\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-230219","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

探测器的时间响应特性在辐射成像系统中至关重要。遗憾的是,现有的平行板电离室探测器响应时间较慢,导致辐射图像模糊不清。为了提高成像质量,必须改变探测器的电极结构以缩短响应时间。本文提出了一种具有快速响应时间的网格结构气体探测器。本研究使用 COMSOL 计算探测器静电场,并使用 Garfield++ 模拟探测器的输出信号。为了验证模拟结果的准确性,在实验平台上对实验电离室进行了测试。结果显示,栅格探测器感应区的平均电场强度至少增加了 33%。探测器的响应时间缩短到平行板探测器的 27% -38%,而探测器的灵敏度仅降低了 10%。因此,在平行板探测器中加入网格结构可以显著改善气体探测器的时间响应特性,为未来探测器的改进提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast response time gas ionization chamber detector with a grid structure.

The time response characteristic of the detector is crucial in radiation imaging systems. Unfortunately, existing parallel plate ionization chamber detectors have a slow response time, which leads to blurry radiation images. To enhance imaging quality, the electrode structure of the detector must be modified to reduce the response time. This paper proposes a gas detector with a grid structure that has a fast response time. In this study, the detector electrostatic field was calculated using COMSOL, while Garfield++ was utilized to simulate the detector's output signal. To validate the accuracy of simulation results, the experimental ionization chamber was tested on the experimental platform. The results revealed that the average electric field intensity in the induced region of the grid detector was increased by at least 33%. The detector response time was reduced to 27% -38% of that of the parallel plate detector, while the sensitivity of the detector was only reduced by 10%. Therefore, incorporating a grid structure within the parallel plate detector can significantly improve the time response characteristics of the gas detector, providing an insight for future detector enhancements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信