Stewart Lyle, Ruben Rodriguez, Patrick M. Troccolo
{"title":"提高尼康 XY-2i 的性能","authors":"Stewart Lyle, Ruben Rodriguez, Patrick M. Troccolo","doi":"10.1117/12.3011914","DOIUrl":null,"url":null,"abstract":"Due to the need for better repeatability in mask registration measurement, Intel Corporation instigated a joint project with Nikon Precision Inc attempting to improve the performance of their new XY-2I to +/- 0.05μ over lOOmn. The empirical experimentation focused on controlling and/or more accurately monitoring the errors associated with interferometer compensation for air and mask temperature, temperature differences between the X and Y portions of the interferometer, plate temperature non-uniformity, and incorrect plate climatization. Flouroptic temperature probes monitoring plate and X/Y interferometer temperatures showed that installation of curtains and precisely-placed fans, better placement of Nikon air and mask temperature sensors, and proper plate climatization eliminated X/Y interferometer temperature differences, improved plate temperature stability and uniformity, and greatly reduced the air and plate temperature measurement errors. Long-term repeatability and residual-orthogonality measurements both showed large improvements with the range of orthogonality fluctuations ^ +/- 0.14” of arc and long-term repeatability ^ +/- 0.06μ over 100mm. These results indicate that with a few simple and inexpensive modifications, XY-2I performance improvement is possible.","PeriodicalId":235881,"journal":{"name":"Photomask Technology","volume":"28 1","pages":"1281004 - 1281004-31"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Nikon XY-2i performance\",\"authors\":\"Stewart Lyle, Ruben Rodriguez, Patrick M. Troccolo\",\"doi\":\"10.1117/12.3011914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the need for better repeatability in mask registration measurement, Intel Corporation instigated a joint project with Nikon Precision Inc attempting to improve the performance of their new XY-2I to +/- 0.05μ over lOOmn. The empirical experimentation focused on controlling and/or more accurately monitoring the errors associated with interferometer compensation for air and mask temperature, temperature differences between the X and Y portions of the interferometer, plate temperature non-uniformity, and incorrect plate climatization. Flouroptic temperature probes monitoring plate and X/Y interferometer temperatures showed that installation of curtains and precisely-placed fans, better placement of Nikon air and mask temperature sensors, and proper plate climatization eliminated X/Y interferometer temperature differences, improved plate temperature stability and uniformity, and greatly reduced the air and plate temperature measurement errors. Long-term repeatability and residual-orthogonality measurements both showed large improvements with the range of orthogonality fluctuations ^ +/- 0.14” of arc and long-term repeatability ^ +/- 0.06μ over 100mm. These results indicate that with a few simple and inexpensive modifications, XY-2I performance improvement is possible.\",\"PeriodicalId\":235881,\"journal\":{\"name\":\"Photomask Technology\",\"volume\":\"28 1\",\"pages\":\"1281004 - 1281004-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photomask Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3011914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photomask Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3011914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Due to the need for better repeatability in mask registration measurement, Intel Corporation instigated a joint project with Nikon Precision Inc attempting to improve the performance of their new XY-2I to +/- 0.05μ over lOOmn. The empirical experimentation focused on controlling and/or more accurately monitoring the errors associated with interferometer compensation for air and mask temperature, temperature differences between the X and Y portions of the interferometer, plate temperature non-uniformity, and incorrect plate climatization. Flouroptic temperature probes monitoring plate and X/Y interferometer temperatures showed that installation of curtains and precisely-placed fans, better placement of Nikon air and mask temperature sensors, and proper plate climatization eliminated X/Y interferometer temperature differences, improved plate temperature stability and uniformity, and greatly reduced the air and plate temperature measurement errors. Long-term repeatability and residual-orthogonality measurements both showed large improvements with the range of orthogonality fluctuations ^ +/- 0.14” of arc and long-term repeatability ^ +/- 0.06μ over 100mm. These results indicate that with a few simple and inexpensive modifications, XY-2I performance improvement is possible.