利用 GWO 嵌套 CEEMDAN-CNN-BiLSTM 模型提高风速预报精度

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Quoc Bao Phan, Tuy Tan Nguyen
{"title":"利用 GWO 嵌套 CEEMDAN-CNN-BiLSTM 模型提高风速预报精度","authors":"Quoc Bao Phan,&nbsp;Tuy Tan Nguyen","doi":"10.1016/j.icte.2023.11.009","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces an advanced artificial model, grey wolf optimization (GWO)-nested complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-convolutional neural network (CNN)-bidirectional long short-term memory (BiLSTM), for wind speed forecasting. Initially, CEEMDAN with two nested layers decomposes the time series into intrinsic mode functions (IMFs) to enhance forecasting capabilities. Subsequently, CNN extracts features from IMFs, and BiLSTM captures temporal dependencies for precise predictions. GWO further enhances the accurac by selecting optimal hyperparameters based on decomposition results. Test results on diverse wind speed datasets demonstrate the model’s superiority, with a mean absolute percentage error (MAPE) of approximately 3%.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 3","pages":"Pages 485-490"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405959523001522/pdfft?md5=8197c98fe29e0ede6bd7cbb98a478d22&pid=1-s2.0-S2405959523001522-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing wind speed forecasting accuracy using a GWO-nested CEEMDAN-CNN-BiLSTM model\",\"authors\":\"Quoc Bao Phan,&nbsp;Tuy Tan Nguyen\",\"doi\":\"10.1016/j.icte.2023.11.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study introduces an advanced artificial model, grey wolf optimization (GWO)-nested complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-convolutional neural network (CNN)-bidirectional long short-term memory (BiLSTM), for wind speed forecasting. Initially, CEEMDAN with two nested layers decomposes the time series into intrinsic mode functions (IMFs) to enhance forecasting capabilities. Subsequently, CNN extracts features from IMFs, and BiLSTM captures temporal dependencies for precise predictions. GWO further enhances the accurac by selecting optimal hyperparameters based on decomposition results. Test results on diverse wind speed datasets demonstrate the model’s superiority, with a mean absolute percentage error (MAPE) of approximately 3%.</p></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"10 3\",\"pages\":\"Pages 485-490\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405959523001522/pdfft?md5=8197c98fe29e0ede6bd7cbb98a478d22&pid=1-s2.0-S2405959523001522-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959523001522\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959523001522","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种用于风速预报的先进人工模型,即灰狼优化(GWO)-嵌套完整集合经验模式分解与自适应噪声(CEEMDAN)-卷积神经网络(CNN)-双向长短期记忆(BiLSTM)。首先,具有两个嵌套层的 CEEMDAN 将时间序列分解为固有模态函数 (IMF),以增强预测能力。随后,CNN 从 IMFs 中提取特征,BiLSTM 则捕捉时间相关性,从而进行精确预测。GWO 根据分解结果选择最佳超参数,从而进一步提高预测精度。在不同风速数据集上的测试结果证明了该模型的优越性,其平均绝对百分比误差 (MAPE) 约为 3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing wind speed forecasting accuracy using a GWO-nested CEEMDAN-CNN-BiLSTM model

This study introduces an advanced artificial model, grey wolf optimization (GWO)-nested complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-convolutional neural network (CNN)-bidirectional long short-term memory (BiLSTM), for wind speed forecasting. Initially, CEEMDAN with two nested layers decomposes the time series into intrinsic mode functions (IMFs) to enhance forecasting capabilities. Subsequently, CNN extracts features from IMFs, and BiLSTM captures temporal dependencies for precise predictions. GWO further enhances the accurac by selecting optimal hyperparameters based on decomposition results. Test results on diverse wind speed datasets demonstrate the model’s superiority, with a mean absolute percentage error (MAPE) of approximately 3%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信