用于 EUV 光刻技术的碳纳米管膜:多功能材料平台

J. Etula, Ahmed Soliman, Tuhin Ghosh, Bjørn F. Mikladal, Emma Salmi, Emile Van Veldhoven, Kirill Chernenko, Ilkka Varjos, T. Juntunen
{"title":"用于 EUV 光刻技术的碳纳米管膜:多功能材料平台","authors":"J. Etula, Ahmed Soliman, Tuhin Ghosh, Bjørn F. Mikladal, Emma Salmi, Emile Van Veldhoven, Kirill Chernenko, Ilkka Varjos, T. Juntunen","doi":"10.1117/12.2686790","DOIUrl":null,"url":null,"abstract":"Next generation of high-NA extreme ultraviolet (EUV) photolithography introduces higher power levels and faster reticle accelerations, enabling breakthrough in scanner efficiency. This results in higher temperatures and mechanical stresses on the EUV pellicles. Here we demonstrate scalable carbon nanotube (CNT) membrane mass production from a floating catalyst chemical vapor deposition (FC-CVD) reactor, using a direct dry deposition method. This direct high volume fabrication method yields highly uniform CNT networks with high strength and purity, enabling exceedingly thin CNT pellicles with high transparency at EUV. This end-to-end manufacturing process, starting from reagent gases, enables control and reproducibility over the final nanomaterial product. Control over synthesis allows tailoring of the carbon nanotube diameter and wall count (SWCNT or FWCNT), as well as control over the CNT network morphology such as the density, bundle size, and orientation of CNTs. The combination of this direct fabrication method with the exceptional mechanical and thermal properties of CNTs creates a versatile membrane platform, which can be further modified with post process steps such as purification to remove metal impurities. To enable conformal and thin coatings on CNTs, wet and dry functionalization steps are demonstrated to match the surface chemistry of CNTs to the specific deposition chemistry used in atomic layer (ALD), chemical vapor (CVD), or physical vapor (PVD) deposition processes. Thicker and denser CNT membranes with appropriate coatings are also suitable for other roles, such as filtering debris from an EUV source, blocking DUV photons and electrons, and providing a gas seal for differential pressure.","PeriodicalId":235881,"journal":{"name":"Photomask Technology","volume":"116 5","pages":"127500M - 127500M-8"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon nanotube membranes for EUV photolithography: a versatile material platform\",\"authors\":\"J. Etula, Ahmed Soliman, Tuhin Ghosh, Bjørn F. Mikladal, Emma Salmi, Emile Van Veldhoven, Kirill Chernenko, Ilkka Varjos, T. Juntunen\",\"doi\":\"10.1117/12.2686790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Next generation of high-NA extreme ultraviolet (EUV) photolithography introduces higher power levels and faster reticle accelerations, enabling breakthrough in scanner efficiency. This results in higher temperatures and mechanical stresses on the EUV pellicles. Here we demonstrate scalable carbon nanotube (CNT) membrane mass production from a floating catalyst chemical vapor deposition (FC-CVD) reactor, using a direct dry deposition method. This direct high volume fabrication method yields highly uniform CNT networks with high strength and purity, enabling exceedingly thin CNT pellicles with high transparency at EUV. This end-to-end manufacturing process, starting from reagent gases, enables control and reproducibility over the final nanomaterial product. Control over synthesis allows tailoring of the carbon nanotube diameter and wall count (SWCNT or FWCNT), as well as control over the CNT network morphology such as the density, bundle size, and orientation of CNTs. The combination of this direct fabrication method with the exceptional mechanical and thermal properties of CNTs creates a versatile membrane platform, which can be further modified with post process steps such as purification to remove metal impurities. To enable conformal and thin coatings on CNTs, wet and dry functionalization steps are demonstrated to match the surface chemistry of CNTs to the specific deposition chemistry used in atomic layer (ALD), chemical vapor (CVD), or physical vapor (PVD) deposition processes. Thicker and denser CNT membranes with appropriate coatings are also suitable for other roles, such as filtering debris from an EUV source, blocking DUV photons and electrons, and providing a gas seal for differential pressure.\",\"PeriodicalId\":235881,\"journal\":{\"name\":\"Photomask Technology\",\"volume\":\"116 5\",\"pages\":\"127500M - 127500M-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photomask Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2686790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photomask Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2686790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

下一代高纳极紫外(EUV)光刻技术引入了更高的功率水平和更快的微粒加速度,使扫描仪的效率实现了突破。这导致 EUV 粒子温度更高,机械应力更大。在这里,我们利用直接干沉积法,展示了可扩展的碳纳米管(CNT)膜批量生产技术,该技术来自浮动催化剂化学气相沉积(FC-CVD)反应器。这种直接大批量制造方法可生产出高度均匀、高强度和高纯度的碳纳米管网络,使超薄的碳纳米管颗粒在紫外可见光(EUV)下具有高透明度。这种从试剂气体开始的端到端制造工艺可实现对最终纳米材料产品的控制和可重复性。通过对合成的控制,可以定制碳纳米管的直径和壁数(SWCNT 或 FWCNT),还可以控制碳纳米管网络的形态,如碳纳米管的密度、管束尺寸和取向。这种直接制造方法与碳纳米管优异的机械和热性能相结合,创造出一种多功能膜平台,可通过后加工步骤(如净化以去除金属杂质)对其进行进一步改良。为了在 CNT 上实现保形和薄涂层,演示了湿法和干法功能化步骤,使 CNT 的表面化学与原子层 (ALD)、化学气相沉积 (CVD) 或物理气相沉积 (PVD) 过程中使用的特定沉积化学相匹配。具有适当涂层的更厚、更致密的 CNT 膜也适用于其他用途,例如过滤来自 EUV 源的碎片、阻挡 DUV 光子和电子以及提供压差气体密封。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbon nanotube membranes for EUV photolithography: a versatile material platform
Next generation of high-NA extreme ultraviolet (EUV) photolithography introduces higher power levels and faster reticle accelerations, enabling breakthrough in scanner efficiency. This results in higher temperatures and mechanical stresses on the EUV pellicles. Here we demonstrate scalable carbon nanotube (CNT) membrane mass production from a floating catalyst chemical vapor deposition (FC-CVD) reactor, using a direct dry deposition method. This direct high volume fabrication method yields highly uniform CNT networks with high strength and purity, enabling exceedingly thin CNT pellicles with high transparency at EUV. This end-to-end manufacturing process, starting from reagent gases, enables control and reproducibility over the final nanomaterial product. Control over synthesis allows tailoring of the carbon nanotube diameter and wall count (SWCNT or FWCNT), as well as control over the CNT network morphology such as the density, bundle size, and orientation of CNTs. The combination of this direct fabrication method with the exceptional mechanical and thermal properties of CNTs creates a versatile membrane platform, which can be further modified with post process steps such as purification to remove metal impurities. To enable conformal and thin coatings on CNTs, wet and dry functionalization steps are demonstrated to match the surface chemistry of CNTs to the specific deposition chemistry used in atomic layer (ALD), chemical vapor (CVD), or physical vapor (PVD) deposition processes. Thicker and denser CNT membranes with appropriate coatings are also suitable for other roles, such as filtering debris from an EUV source, blocking DUV photons and electrons, and providing a gas seal for differential pressure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信