氧化还原门控实现巨型载波调制和独特的相位控制

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Le Zhang, Changjiang Liu, Hui Cao, Andrew J. Erwin, Dillon D. Fong, Anand Bhattacharya, Luping Yu, Liliana Stan, Chongwen Zou, Matthew V. Tirrell, Hua Zhou, Wei Chen
{"title":"氧化还原门控实现巨型载波调制和独特的相位控制","authors":"Le Zhang,&nbsp;Changjiang Liu,&nbsp;Hui Cao,&nbsp;Andrew J. Erwin,&nbsp;Dillon D. Fong,&nbsp;Anand Bhattacharya,&nbsp;Luping Yu,&nbsp;Liliana Stan,&nbsp;Chongwen Zou,&nbsp;Matthew V. Tirrell,&nbsp;Hua Zhou,&nbsp;Wei Chen","doi":"10.1002/adma.202308871","DOIUrl":null,"url":null,"abstract":"<p>Redox gating, a novel approach distinct from conventional electrolyte gating, combines reversible redox functionalities with common ionic electrolyte moieties to engineer charge transport, enabling power-efficient electronic phase control. This study achieves a colossal sheet carrier density modulation beyond 10<sup>16</sup> cm<sup>−2</sup>, sustainable over thousands of cycles, all within the sub-volt regime for functional oxide thin films. The key advantage of this method lies in the controlled injection of a large quantity of carriers from the electrolyte into the channel material without the deleterious effects associated with traditional electrolyte gating processes such as the production of ionic defects or intercalated species. The redox gating approach offers a simple and practical means of decoupling electrical and structural phase transitions, enabling the isostructural metal-insulator transition and improved device endurance. The versatility of redox gating extends across multiple materials, irrespective of their crystallinity, crystallographic orientation, or carrier type (n- or p-type). This inclusivity encompasses functional heterostructures and low-dimensional quantum materials composed of sustainable elements, highlighting the broad applicability and potential of the technique in electronic devices.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202308871","citationCount":"0","resultStr":"{\"title\":\"Redox Gating for Colossal Carrier Modulation and Unique Phase Control\",\"authors\":\"Le Zhang,&nbsp;Changjiang Liu,&nbsp;Hui Cao,&nbsp;Andrew J. Erwin,&nbsp;Dillon D. Fong,&nbsp;Anand Bhattacharya,&nbsp;Luping Yu,&nbsp;Liliana Stan,&nbsp;Chongwen Zou,&nbsp;Matthew V. Tirrell,&nbsp;Hua Zhou,&nbsp;Wei Chen\",\"doi\":\"10.1002/adma.202308871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Redox gating, a novel approach distinct from conventional electrolyte gating, combines reversible redox functionalities with common ionic electrolyte moieties to engineer charge transport, enabling power-efficient electronic phase control. This study achieves a colossal sheet carrier density modulation beyond 10<sup>16</sup> cm<sup>−2</sup>, sustainable over thousands of cycles, all within the sub-volt regime for functional oxide thin films. The key advantage of this method lies in the controlled injection of a large quantity of carriers from the electrolyte into the channel material without the deleterious effects associated with traditional electrolyte gating processes such as the production of ionic defects or intercalated species. The redox gating approach offers a simple and practical means of decoupling electrical and structural phase transitions, enabling the isostructural metal-insulator transition and improved device endurance. The versatility of redox gating extends across multiple materials, irrespective of their crystallinity, crystallographic orientation, or carrier type (n- or p-type). This inclusivity encompasses functional heterostructures and low-dimensional quantum materials composed of sustainable elements, highlighting the broad applicability and potential of the technique in electronic devices.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202308871\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202308871\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202308871","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

氧化还原门控是一种有别于传统电解质门控的新方法,它将可逆氧化还原功能与常见的离子电解质分子结合起来,设计电荷传输,实现高能效的电子相位控制。在我们的研究中,我们实现了超过 1016 cm-2 的巨大片状载流子密度调制,可持续数千次循环,所有这些都是在亚伏特范围内实现的功能性氧化物薄膜。这种方法的主要优势在于可控地将大量载流子从电解质注入通道材料,而不会产生传统电解质门控过程的有害影响,如产生离子缺陷或夹杂物。氧化还原门控方法提供了一种简单实用的方法来解耦电相变和结构相变,从而实现等结构金属-绝缘体转变并提高器件的耐久性。氧化还原门控的多功能性适用于多种材料,无论其结晶度、结晶取向或载流子类型(n 型或 p 型)如何。这种包容性包括由可持续元素组成的功能性异质结构和低维量子材料,凸显了该技术在电子器件中的广泛适用性和潜力。本文受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Redox Gating for Colossal Carrier Modulation and Unique Phase Control

Redox Gating for Colossal Carrier Modulation and Unique Phase Control

Redox gating, a novel approach distinct from conventional electrolyte gating, combines reversible redox functionalities with common ionic electrolyte moieties to engineer charge transport, enabling power-efficient electronic phase control. This study achieves a colossal sheet carrier density modulation beyond 1016 cm−2, sustainable over thousands of cycles, all within the sub-volt regime for functional oxide thin films. The key advantage of this method lies in the controlled injection of a large quantity of carriers from the electrolyte into the channel material without the deleterious effects associated with traditional electrolyte gating processes such as the production of ionic defects or intercalated species. The redox gating approach offers a simple and practical means of decoupling electrical and structural phase transitions, enabling the isostructural metal-insulator transition and improved device endurance. The versatility of redox gating extends across multiple materials, irrespective of their crystallinity, crystallographic orientation, or carrier type (n- or p-type). This inclusivity encompasses functional heterostructures and low-dimensional quantum materials composed of sustainable elements, highlighting the broad applicability and potential of the technique in electronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信