{"title":"用于缓解真实建筑环境中起重机司机精神疲劳的经皮穴位电模拟手套。","authors":"Fuwang Wang, Daping Chen, Xiaolei Zhang","doi":"10.1080/10255842.2023.2301668","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of construction, the lifting environment of precast parts is more complex, which leads to the driver's fatigue. When the tower crane driver appears driving fatigue, it will appear slow operation response, hoisting precast parts appear abnormal swing, which will endanger the safety of on-site operators. Therefore, this study developed a kind of transcutaneous acupoint electrical stimulation gloves. When the crane driver wears this kind of glove, the good contraction of the glove can make the stimulation electrode closely fit with the three points, so as to perform electrical stimulation on the Neìguān point (PC6), Láogóng point (PC8) and Hégŭ point (L14) of the palm to relieve the driver's driving fatigue. In this study, non-periodic transcutaneous acupoint electrical stimulation (NPTAES) was used to stimulate human acupuncture points. This is different from the traditional periodic transcutaneous acupoint electrical stimulation (PTAES) method for relieving mental fatigue. In addition, this study used hilbert marginal spectral entropy (HMSE) to calculate the heart rate variability (HRV) characteristics of the subjects, so as to detect and analyze the driving fatigue of the drivers. At the same time, the drivers' blinking frequency and electroencephalogram (EEG) characteristics were analyzed comprehensively. The results show that: The NPTAES method used in this study is superior to the PTAES method in alleviating driving fatigue and greatly improves the efficiency of tower crane drivers. Compared to other methods, the HMSE method proposed in this study, when analyzing signals, stronger ability to characterize signal characteristics.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"725-738"},"PeriodicalIF":1.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A transcutaneous acupoint electrical simulation glove for relieving the mental fatigue of crane drivers in real building environment.\",\"authors\":\"Fuwang Wang, Daping Chen, Xiaolei Zhang\",\"doi\":\"10.1080/10255842.2023.2301668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the field of construction, the lifting environment of precast parts is more complex, which leads to the driver's fatigue. When the tower crane driver appears driving fatigue, it will appear slow operation response, hoisting precast parts appear abnormal swing, which will endanger the safety of on-site operators. Therefore, this study developed a kind of transcutaneous acupoint electrical stimulation gloves. When the crane driver wears this kind of glove, the good contraction of the glove can make the stimulation electrode closely fit with the three points, so as to perform electrical stimulation on the Neìguān point (PC6), Láogóng point (PC8) and Hégŭ point (L14) of the palm to relieve the driver's driving fatigue. In this study, non-periodic transcutaneous acupoint electrical stimulation (NPTAES) was used to stimulate human acupuncture points. This is different from the traditional periodic transcutaneous acupoint electrical stimulation (PTAES) method for relieving mental fatigue. In addition, this study used hilbert marginal spectral entropy (HMSE) to calculate the heart rate variability (HRV) characteristics of the subjects, so as to detect and analyze the driving fatigue of the drivers. At the same time, the drivers' blinking frequency and electroencephalogram (EEG) characteristics were analyzed comprehensively. The results show that: The NPTAES method used in this study is superior to the PTAES method in alleviating driving fatigue and greatly improves the efficiency of tower crane drivers. Compared to other methods, the HMSE method proposed in this study, when analyzing signals, stronger ability to characterize signal characteristics.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"725-738\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2301668\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2301668","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A transcutaneous acupoint electrical simulation glove for relieving the mental fatigue of crane drivers in real building environment.
In the field of construction, the lifting environment of precast parts is more complex, which leads to the driver's fatigue. When the tower crane driver appears driving fatigue, it will appear slow operation response, hoisting precast parts appear abnormal swing, which will endanger the safety of on-site operators. Therefore, this study developed a kind of transcutaneous acupoint electrical stimulation gloves. When the crane driver wears this kind of glove, the good contraction of the glove can make the stimulation electrode closely fit with the three points, so as to perform electrical stimulation on the Neìguān point (PC6), Láogóng point (PC8) and Hégŭ point (L14) of the palm to relieve the driver's driving fatigue. In this study, non-periodic transcutaneous acupoint electrical stimulation (NPTAES) was used to stimulate human acupuncture points. This is different from the traditional periodic transcutaneous acupoint electrical stimulation (PTAES) method for relieving mental fatigue. In addition, this study used hilbert marginal spectral entropy (HMSE) to calculate the heart rate variability (HRV) characteristics of the subjects, so as to detect and analyze the driving fatigue of the drivers. At the same time, the drivers' blinking frequency and electroencephalogram (EEG) characteristics were analyzed comprehensively. The results show that: The NPTAES method used in this study is superior to the PTAES method in alleviating driving fatigue and greatly improves the efficiency of tower crane drivers. Compared to other methods, the HMSE method proposed in this study, when analyzing signals, stronger ability to characterize signal characteristics.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.