Sara M. Thomasy , Brian C. Leonard , Mark A. Greiner , Jessica M. Skeie , Vijay Krishna Raghunathan
{"title":"角膜机械生物学在健康和疾病中的应用","authors":"Sara M. Thomasy , Brian C. Leonard , Mark A. Greiner , Jessica M. Skeie , Vijay Krishna Raghunathan","doi":"10.1016/j.preteyeres.2023.101234","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis<span> and pathophysiology. Corneal cells also dynamically regulate their </span></span>extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of </span>mechanotransduction<span><span><span><span> signaling pathways then delve into the recent advances in corneal </span>mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and </span>endothelial cells<span>. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, </span></span>keratoconus<span><span> and Fuchs’ endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding </span>corneal diseases as well as innovative treatments for them.</span></span></p></div>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":"99 ","pages":"Article 101234"},"PeriodicalIF":18.6000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Squishy matters – Corneal mechanobiology in health and disease\",\"authors\":\"Sara M. Thomasy , Brian C. Leonard , Mark A. Greiner , Jessica M. Skeie , Vijay Krishna Raghunathan\",\"doi\":\"10.1016/j.preteyeres.2023.101234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis<span> and pathophysiology. Corneal cells also dynamically regulate their </span></span>extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of </span>mechanotransduction<span><span><span><span> signaling pathways then delve into the recent advances in corneal </span>mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and </span>endothelial cells<span>. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, </span></span>keratoconus<span><span> and Fuchs’ endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding </span>corneal diseases as well as innovative treatments for them.</span></span></p></div>\",\"PeriodicalId\":21159,\"journal\":{\"name\":\"Progress in Retinal and Eye Research\",\"volume\":\"99 \",\"pages\":\"Article 101234\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Retinal and Eye Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350946223000733\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Retinal and Eye Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350946223000733","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Squishy matters – Corneal mechanobiology in health and disease
The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis and pathophysiology. Corneal cells also dynamically regulate their extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of mechanotransduction signaling pathways then delve into the recent advances in corneal mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and endothelial cells. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, keratoconus and Fuchs’ endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding corneal diseases as well as innovative treatments for them.
期刊介绍:
Progress in Retinal and Eye Research is a Reviews-only journal. By invitation, leading experts write on basic and clinical aspects of the eye in a style appealing to molecular biologists, neuroscientists and physiologists, as well as to vision researchers and ophthalmologists.
The journal covers all aspects of eye research, including topics pertaining to the retina and pigment epithelial layer, cornea, tears, lacrimal glands, aqueous humour, iris, ciliary body, trabeculum, lens, vitreous humour and diseases such as dry-eye, inflammation, keratoconus, corneal dystrophy, glaucoma and cataract.