Mengping Wei , Lei Yang , Feng Su , Ying Liu , Xinyi Zhao , Lin Luo , Xinyue Sun , Sen Liu , Zhaoqi Dong , Yong Zhang , Yun Stone Shi , Jing Liang , Chen Zhang
{"title":"ABHD6 驱动 AMPA 受体的内吞,调节突触可塑性和学习灵活性","authors":"Mengping Wei , Lei Yang , Feng Su , Ying Liu , Xinyi Zhao , Lin Luo , Xinyue Sun , Sen Liu , Zhaoqi Dong , Yong Zhang , Yun Stone Shi , Jing Liang , Chen Zhang","doi":"10.1016/j.pneurobio.2023.102559","DOIUrl":null,"url":null,"abstract":"<div><p><span>Trafficking of α‐Amino‐3–hydroxy‐5–methylisoxazole‐4–propionic acid (AMPA) receptors (AMPARs), mediated by AMPAR<span> interacting proteins, enabled neurons to maintain tuning capabilities at rest or active state. α/β-Hydrolase domain-containing 6 (ABHD6), an endocannabinoid<span> hydrolase, was an AMPAR auxiliary subunit found to negatively regulate the surface delivery of AMPARs. While ABHD6 was found to prevent AMPAR tetramerization in endoplasmic reticulum, ABHD6 was also reported to localize at postsynaptic site. Yet, the role of ABHD6 interacting with AMPAR at postsynaptic site, and the physiological significance of ABHD6 regulating AMPAR trafficking remains elusive. Here, we generated the ABHD6 knockout (ABHD6</span></span></span><sup>KO</sup><span><span>) mice and found that deletion of ABHD6 selectively enhanced AMPAR-mediated basal synaptic responses and the surface expression of postsynaptic AMPARs. Furthermore, we found that loss of ABHD6 impaired hippocampal long-term depression (LTD) and synaptic downscaling in hippocampal synapses. AMPAR internalization assays revealed that ABHD6 was essential for neuronal activity-dependent </span>endocytosis of surface AMPARs, which is independent of ABHD6's hydrolase activity. The defects of AMPAR endocytosis and LTD are expressed as deficits in learning flexibility in ABHD6</span><sup>KO</sup> mice. Collectively, we demonstrated that ABHD6 is an endocytic accessory protein promoting AMPAR endocytosis, thereby contributes to the formation of LTD, synaptic downscaling and reversal learning.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"233 ","pages":"Article 102559"},"PeriodicalIF":6.7000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ABHD6 drives endocytosis of AMPA receptors to regulate synaptic plasticity and learning flexibility\",\"authors\":\"Mengping Wei , Lei Yang , Feng Su , Ying Liu , Xinyi Zhao , Lin Luo , Xinyue Sun , Sen Liu , Zhaoqi Dong , Yong Zhang , Yun Stone Shi , Jing Liang , Chen Zhang\",\"doi\":\"10.1016/j.pneurobio.2023.102559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Trafficking of α‐Amino‐3–hydroxy‐5–methylisoxazole‐4–propionic acid (AMPA) receptors (AMPARs), mediated by AMPAR<span> interacting proteins, enabled neurons to maintain tuning capabilities at rest or active state. α/β-Hydrolase domain-containing 6 (ABHD6), an endocannabinoid<span> hydrolase, was an AMPAR auxiliary subunit found to negatively regulate the surface delivery of AMPARs. While ABHD6 was found to prevent AMPAR tetramerization in endoplasmic reticulum, ABHD6 was also reported to localize at postsynaptic site. Yet, the role of ABHD6 interacting with AMPAR at postsynaptic site, and the physiological significance of ABHD6 regulating AMPAR trafficking remains elusive. Here, we generated the ABHD6 knockout (ABHD6</span></span></span><sup>KO</sup><span><span>) mice and found that deletion of ABHD6 selectively enhanced AMPAR-mediated basal synaptic responses and the surface expression of postsynaptic AMPARs. Furthermore, we found that loss of ABHD6 impaired hippocampal long-term depression (LTD) and synaptic downscaling in hippocampal synapses. AMPAR internalization assays revealed that ABHD6 was essential for neuronal activity-dependent </span>endocytosis of surface AMPARs, which is independent of ABHD6's hydrolase activity. The defects of AMPAR endocytosis and LTD are expressed as deficits in learning flexibility in ABHD6</span><sup>KO</sup> mice. Collectively, we demonstrated that ABHD6 is an endocytic accessory protein promoting AMPAR endocytosis, thereby contributes to the formation of LTD, synaptic downscaling and reversal learning.</p></div>\",\"PeriodicalId\":20851,\"journal\":{\"name\":\"Progress in Neurobiology\",\"volume\":\"233 \",\"pages\":\"Article 102559\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301008223001600\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301008223001600","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
ABHD6 drives endocytosis of AMPA receptors to regulate synaptic plasticity and learning flexibility
Trafficking of α‐Amino‐3–hydroxy‐5–methylisoxazole‐4–propionic acid (AMPA) receptors (AMPARs), mediated by AMPAR interacting proteins, enabled neurons to maintain tuning capabilities at rest or active state. α/β-Hydrolase domain-containing 6 (ABHD6), an endocannabinoid hydrolase, was an AMPAR auxiliary subunit found to negatively regulate the surface delivery of AMPARs. While ABHD6 was found to prevent AMPAR tetramerization in endoplasmic reticulum, ABHD6 was also reported to localize at postsynaptic site. Yet, the role of ABHD6 interacting with AMPAR at postsynaptic site, and the physiological significance of ABHD6 regulating AMPAR trafficking remains elusive. Here, we generated the ABHD6 knockout (ABHD6KO) mice and found that deletion of ABHD6 selectively enhanced AMPAR-mediated basal synaptic responses and the surface expression of postsynaptic AMPARs. Furthermore, we found that loss of ABHD6 impaired hippocampal long-term depression (LTD) and synaptic downscaling in hippocampal synapses. AMPAR internalization assays revealed that ABHD6 was essential for neuronal activity-dependent endocytosis of surface AMPARs, which is independent of ABHD6's hydrolase activity. The defects of AMPAR endocytosis and LTD are expressed as deficits in learning flexibility in ABHD6KO mice. Collectively, we demonstrated that ABHD6 is an endocytic accessory protein promoting AMPAR endocytosis, thereby contributes to the formation of LTD, synaptic downscaling and reversal learning.
期刊介绍:
Progress in Neurobiology is an international journal that publishes groundbreaking original research, comprehensive review articles and opinion pieces written by leading researchers. The journal welcomes contributions from the broad field of neuroscience that apply neurophysiological, biochemical, pharmacological, molecular biological, anatomical, computational and behavioral analyses to problems of molecular, cellular, developmental, systems, and clinical neuroscience.