{"title":"在急性危重症神经肌病的后续治疗中,通过电刺激暂时恢复神经肌肉功能障碍,但恢复情况千差万别:一项试点研究。","authors":"Madona Sekhniashvili, Petra Baum, Klaus V Toyka","doi":"10.1186/s42466-023-00293-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In sepsis-associated critical illness neuromyopathy (CIPNM) serial electrical stimulation of motor nerves induces a short-lived temporary recovery of compound muscle action potentials (CMAPs) termed facilitation phenomenon (FP). This technique is different from other stimulation techniques published. The identification of FP suggests a major functional component in acute CIPNM.</p><p><strong>Methods: </strong>From our previous study cohort of 18 intensive care unit patients with sepsis associated CIPNM showing profound muscle weakness and low or missing CMAPs on nerve conduction studies, six patients with different severity could be followed. In a pilot sub-study we analyzed the variability of FP during follow up. Over up to 6 weeks we performed 2-6 nerve conduction studies with our novel stimulation paradigm. Motor nerves were stimulated at 0.2-0.5 Hz with 60-100 mA at 0.2-0.5 ms duration, and CMAP responses were recorded. Standard motor nerve conduction velocities (NCV) could be done when utilizing facilitated CMAPs. Needle electromyography was checked once for spontaneous activity to discover potential denervation and muscle fiber degeneration. Serum electrolytes were checked before any examination and corrected if abnormal.</p><p><strong>Results: </strong>In all six patients a striking variability in the magnitude and pattern of FP could be observed at each examination in the same and in different motor nerves over time. With the first stimulus most CMAPs were below 0.1 mV or absent. With slow serial pulses CMAPs could gradually recover with normal shape and near normal amplitudes. With facilitated CMAPs NCV measurements revealed low normal values. With improvement of muscle weakness subsequent tests revealed larger first CMAP amplitudes and smaller magnitudes of FP. Needle EMG showed occasional spontaneous activity in the tibialis anterior muscle.</p><p><strong>Conclusion: </strong>In this pilot study striking variability and magnitude of FP during follow-up was a reproducible feature indicating major fluctuations of neuromuscular excitability that may improve during follow-up. FP can be assessed by generally available electrophysiological techniques, even before patients could be tested for muscle strength. Large scale prospective studies of the facilitation phenomenon in CIPNM with or without sepsis are needed to define diagnostic specificity and to better understand the still enigmatic pathophysiology.</p><p><strong>Trial registration: </strong>This trial was registered at the Leipzig University Medical Center in 2021 after approval by the Ethics Committee.</p>","PeriodicalId":94156,"journal":{"name":"Neurological research and practice","volume":"5 1","pages":"66"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753844/pdf/","citationCount":"0","resultStr":"{\"title\":\"Temporary and highly variable recovery of neuromuscular dysfunction by electrical stimulation in the follow-up of acute critical illness neuromyopathy: a pilot study.\",\"authors\":\"Madona Sekhniashvili, Petra Baum, Klaus V Toyka\",\"doi\":\"10.1186/s42466-023-00293-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In sepsis-associated critical illness neuromyopathy (CIPNM) serial electrical stimulation of motor nerves induces a short-lived temporary recovery of compound muscle action potentials (CMAPs) termed facilitation phenomenon (FP). This technique is different from other stimulation techniques published. The identification of FP suggests a major functional component in acute CIPNM.</p><p><strong>Methods: </strong>From our previous study cohort of 18 intensive care unit patients with sepsis associated CIPNM showing profound muscle weakness and low or missing CMAPs on nerve conduction studies, six patients with different severity could be followed. In a pilot sub-study we analyzed the variability of FP during follow up. Over up to 6 weeks we performed 2-6 nerve conduction studies with our novel stimulation paradigm. Motor nerves were stimulated at 0.2-0.5 Hz with 60-100 mA at 0.2-0.5 ms duration, and CMAP responses were recorded. Standard motor nerve conduction velocities (NCV) could be done when utilizing facilitated CMAPs. Needle electromyography was checked once for spontaneous activity to discover potential denervation and muscle fiber degeneration. Serum electrolytes were checked before any examination and corrected if abnormal.</p><p><strong>Results: </strong>In all six patients a striking variability in the magnitude and pattern of FP could be observed at each examination in the same and in different motor nerves over time. With the first stimulus most CMAPs were below 0.1 mV or absent. With slow serial pulses CMAPs could gradually recover with normal shape and near normal amplitudes. With facilitated CMAPs NCV measurements revealed low normal values. With improvement of muscle weakness subsequent tests revealed larger first CMAP amplitudes and smaller magnitudes of FP. Needle EMG showed occasional spontaneous activity in the tibialis anterior muscle.</p><p><strong>Conclusion: </strong>In this pilot study striking variability and magnitude of FP during follow-up was a reproducible feature indicating major fluctuations of neuromuscular excitability that may improve during follow-up. FP can be assessed by generally available electrophysiological techniques, even before patients could be tested for muscle strength. Large scale prospective studies of the facilitation phenomenon in CIPNM with or without sepsis are needed to define diagnostic specificity and to better understand the still enigmatic pathophysiology.</p><p><strong>Trial registration: </strong>This trial was registered at the Leipzig University Medical Center in 2021 after approval by the Ethics Committee.</p>\",\"PeriodicalId\":94156,\"journal\":{\"name\":\"Neurological research and practice\",\"volume\":\"5 1\",\"pages\":\"66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10753844/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurological research and practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42466-023-00293-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurological research and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42466-023-00293-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Temporary and highly variable recovery of neuromuscular dysfunction by electrical stimulation in the follow-up of acute critical illness neuromyopathy: a pilot study.
Background: In sepsis-associated critical illness neuromyopathy (CIPNM) serial electrical stimulation of motor nerves induces a short-lived temporary recovery of compound muscle action potentials (CMAPs) termed facilitation phenomenon (FP). This technique is different from other stimulation techniques published. The identification of FP suggests a major functional component in acute CIPNM.
Methods: From our previous study cohort of 18 intensive care unit patients with sepsis associated CIPNM showing profound muscle weakness and low or missing CMAPs on nerve conduction studies, six patients with different severity could be followed. In a pilot sub-study we analyzed the variability of FP during follow up. Over up to 6 weeks we performed 2-6 nerve conduction studies with our novel stimulation paradigm. Motor nerves were stimulated at 0.2-0.5 Hz with 60-100 mA at 0.2-0.5 ms duration, and CMAP responses were recorded. Standard motor nerve conduction velocities (NCV) could be done when utilizing facilitated CMAPs. Needle electromyography was checked once for spontaneous activity to discover potential denervation and muscle fiber degeneration. Serum electrolytes were checked before any examination and corrected if abnormal.
Results: In all six patients a striking variability in the magnitude and pattern of FP could be observed at each examination in the same and in different motor nerves over time. With the first stimulus most CMAPs were below 0.1 mV or absent. With slow serial pulses CMAPs could gradually recover with normal shape and near normal amplitudes. With facilitated CMAPs NCV measurements revealed low normal values. With improvement of muscle weakness subsequent tests revealed larger first CMAP amplitudes and smaller magnitudes of FP. Needle EMG showed occasional spontaneous activity in the tibialis anterior muscle.
Conclusion: In this pilot study striking variability and magnitude of FP during follow-up was a reproducible feature indicating major fluctuations of neuromuscular excitability that may improve during follow-up. FP can be assessed by generally available electrophysiological techniques, even before patients could be tested for muscle strength. Large scale prospective studies of the facilitation phenomenon in CIPNM with or without sepsis are needed to define diagnostic specificity and to better understand the still enigmatic pathophysiology.
Trial registration: This trial was registered at the Leipzig University Medical Center in 2021 after approval by the Ethics Committee.