改进 TSM:保留基本理念,实现高效行动识别

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Seok Ryu , Sungjun Hong , Sangyun Lee
{"title":"改进 TSM:保留基本理念,实现高效行动识别","authors":"Seok Ryu ,&nbsp;Sungjun Hong ,&nbsp;Sangyun Lee","doi":"10.1016/j.icte.2023.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we present the Discriminative Temporal Shift Module (D-TSM), an enhancement of the Temporal Shift Module (TSM) for action recognition. TSM has limitations in capturing intricate temporal dynamics due to its simplistic feature shifting. D-TSM addresses this by introducing a subtraction operation before the shifting. This enables the extraction of discriminative features between adjacent frames, thereby allowing for effective action recognition where subtle motions serve as crucial cues. It preserves TSM’s foundational philosophy, prioritizing minimal computational overhead and no additional parameters. Our experiments demonstrate that D-TSM significantly improves performance of TSM and outperforms other leading 2D CNN-based methods.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 3","pages":"Pages 570-575"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405959523001625/pdfft?md5=7071ddbe7afa0f6d6c37f5b8286e72a6&pid=1-s2.0-S2405959523001625-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Making TSM better: Preserving foundational philosophy for efficient action recognition\",\"authors\":\"Seok Ryu ,&nbsp;Sungjun Hong ,&nbsp;Sangyun Lee\",\"doi\":\"10.1016/j.icte.2023.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we present the Discriminative Temporal Shift Module (D-TSM), an enhancement of the Temporal Shift Module (TSM) for action recognition. TSM has limitations in capturing intricate temporal dynamics due to its simplistic feature shifting. D-TSM addresses this by introducing a subtraction operation before the shifting. This enables the extraction of discriminative features between adjacent frames, thereby allowing for effective action recognition where subtle motions serve as crucial cues. It preserves TSM’s foundational philosophy, prioritizing minimal computational overhead and no additional parameters. Our experiments demonstrate that D-TSM significantly improves performance of TSM and outperforms other leading 2D CNN-based methods.</p></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"10 3\",\"pages\":\"Pages 570-575\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405959523001625/pdfft?md5=7071ddbe7afa0f6d6c37f5b8286e72a6&pid=1-s2.0-S2405959523001625-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959523001625\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959523001625","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提出了判别时移模块(D-TSM),它是时移模块(TSM)的增强版,用于动作识别。TSM 在捕捉错综复杂的时间动态方面存在局限性,原因在于其简单的特征移动。D-TSM 通过在移位前引入减法操作来解决这一问题。这样就能提取相邻帧之间的鉴别特征,从而实现有效的动作识别,将微妙的运动作为关键线索。它保留了 TSM 的基本理念,优先考虑最小的计算开销和无附加参数。我们的实验证明,D-TSM 显著提高了 TSM 的性能,并优于其他领先的基于二维 CNN 的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Making TSM better: Preserving foundational philosophy for efficient action recognition

In this study, we present the Discriminative Temporal Shift Module (D-TSM), an enhancement of the Temporal Shift Module (TSM) for action recognition. TSM has limitations in capturing intricate temporal dynamics due to its simplistic feature shifting. D-TSM addresses this by introducing a subtraction operation before the shifting. This enables the extraction of discriminative features between adjacent frames, thereby allowing for effective action recognition where subtle motions serve as crucial cues. It preserves TSM’s foundational philosophy, prioritizing minimal computational overhead and no additional parameters. Our experiments demonstrate that D-TSM significantly improves performance of TSM and outperforms other leading 2D CNN-based methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信