{"title":"基质力学对优化肿瘤放疗的作用和潜在治疗策略","authors":"Yaxin Deng , Guobao Chen , Jiali Xiao , Hong Deng","doi":"10.1016/j.mbm.2023.100037","DOIUrl":null,"url":null,"abstract":"<div><p>Radiation therapy is one of the most effective therapeutic modalities for tumors. The changes in matrix stiffness of tumors and associated tissues are important consequences of side effects after radiotherapy. They are documented to induce the radio-resistance of cancer cells and promote the recurrence and metastasis of tumors, resulting in poor patient prognosis. Identifying the relationship between radiation and matrix stiffness is beneficial to optimize clinical treatment schemes and ultimately improve the patient prognosis. Herein, this review includes knowledge regarding the specific cellular, molecular processes and relevant clinical factors of the changes in matrix stiffness of tumors or associated tissues induced by radiation. The effects of altered matrix stiffness on the behaviors of cancer cells and associated normal cells are further detailed. It also reviews literatures to elucidate the mechanical signal transduction mechanism in radiotherapy and proposes some strategies to enhance the efficacy of radiotherapy based on matrix mechanics.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 1","pages":"Article 100037"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907023000372/pdfft?md5=a7bfabed7a16a217dbd63f6b782d4d68&pid=1-s2.0-S2949907023000372-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Role and potential therapeutic strategies of matrix mechanics for optimizing tumor radiotherapy\",\"authors\":\"Yaxin Deng , Guobao Chen , Jiali Xiao , Hong Deng\",\"doi\":\"10.1016/j.mbm.2023.100037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Radiation therapy is one of the most effective therapeutic modalities for tumors. The changes in matrix stiffness of tumors and associated tissues are important consequences of side effects after radiotherapy. They are documented to induce the radio-resistance of cancer cells and promote the recurrence and metastasis of tumors, resulting in poor patient prognosis. Identifying the relationship between radiation and matrix stiffness is beneficial to optimize clinical treatment schemes and ultimately improve the patient prognosis. Herein, this review includes knowledge regarding the specific cellular, molecular processes and relevant clinical factors of the changes in matrix stiffness of tumors or associated tissues induced by radiation. The effects of altered matrix stiffness on the behaviors of cancer cells and associated normal cells are further detailed. It also reviews literatures to elucidate the mechanical signal transduction mechanism in radiotherapy and proposes some strategies to enhance the efficacy of radiotherapy based on matrix mechanics.</p></div>\",\"PeriodicalId\":100900,\"journal\":{\"name\":\"Mechanobiology in Medicine\",\"volume\":\"2 1\",\"pages\":\"Article 100037\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949907023000372/pdfft?md5=a7bfabed7a16a217dbd63f6b782d4d68&pid=1-s2.0-S2949907023000372-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanobiology in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949907023000372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907023000372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Role and potential therapeutic strategies of matrix mechanics for optimizing tumor radiotherapy
Radiation therapy is one of the most effective therapeutic modalities for tumors. The changes in matrix stiffness of tumors and associated tissues are important consequences of side effects after radiotherapy. They are documented to induce the radio-resistance of cancer cells and promote the recurrence and metastasis of tumors, resulting in poor patient prognosis. Identifying the relationship between radiation and matrix stiffness is beneficial to optimize clinical treatment schemes and ultimately improve the patient prognosis. Herein, this review includes knowledge regarding the specific cellular, molecular processes and relevant clinical factors of the changes in matrix stiffness of tumors or associated tissues induced by radiation. The effects of altered matrix stiffness on the behaviors of cancer cells and associated normal cells are further detailed. It also reviews literatures to elucidate the mechanical signal transduction mechanism in radiotherapy and proposes some strategies to enhance the efficacy of radiotherapy based on matrix mechanics.