Yanji Wang, Yu Wang, Yi Liu, Yanzhong Zhang, Yu Yan, Youde Hu, Xinpeng Wang, Hao Zhang, Rongqing Xu, Yi Tong
{"title":"超高频忆阻器电路模型","authors":"Yanji Wang, Yu Wang, Yi Liu, Yanzhong Zhang, Yu Yan, Youde Hu, Xinpeng Wang, Hao Zhang, Rongqing Xu, Yi Tong","doi":"10.1088/1361-6641/ad14ed","DOIUrl":null,"url":null,"abstract":"\n In the context of sixth-generation (6G) wireless communications technology, advanced radio-frequency (RF) switches are required to accommodate high-frequency terahertz range and complex modulation techniques. This paper proposes a flexible charge-controlled memristor model specifically designed for ultra-high-frequency applications. It describes in detail the derivation of the behavior model of the proposed memristor circuit. The memristor circuit model is built around four inverters, two multipliers, one integrator, one adder, and one differentiator. Through PSPICE simulation, the typical hysteresis loop of the memristor is thoroughly analyzed, demonstrating its suitability for use in wireless communication systems. The model exhibits a good typical hysteresis loop that operates over a wide frequency range from 100 kHz to 20 THz, meeting the specific requirements of terahertz applications. Compared to existing memristor designs, it operates at a much higher frequency. However, the zero crossing of the typical hysteresis loop deviates when the operating frequency exceeds 20 THz. Furthermore, the proposed memristor model can be customized in terms of set/reset voltage, operating frequency and R_off⁄R_on , and has been verified for use in high speed switches with switching speeds of 19.5 ps. Furthermore, this research fills the gap in ultra-high-frequency memristor modeling, offering valuable insights and guidance for the utilization of memristors in the 6G technology and ultra-high frequency fields.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ultra-high-frequency memristor circuit model\",\"authors\":\"Yanji Wang, Yu Wang, Yi Liu, Yanzhong Zhang, Yu Yan, Youde Hu, Xinpeng Wang, Hao Zhang, Rongqing Xu, Yi Tong\",\"doi\":\"10.1088/1361-6641/ad14ed\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the context of sixth-generation (6G) wireless communications technology, advanced radio-frequency (RF) switches are required to accommodate high-frequency terahertz range and complex modulation techniques. This paper proposes a flexible charge-controlled memristor model specifically designed for ultra-high-frequency applications. It describes in detail the derivation of the behavior model of the proposed memristor circuit. The memristor circuit model is built around four inverters, two multipliers, one integrator, one adder, and one differentiator. Through PSPICE simulation, the typical hysteresis loop of the memristor is thoroughly analyzed, demonstrating its suitability for use in wireless communication systems. The model exhibits a good typical hysteresis loop that operates over a wide frequency range from 100 kHz to 20 THz, meeting the specific requirements of terahertz applications. Compared to existing memristor designs, it operates at a much higher frequency. However, the zero crossing of the typical hysteresis loop deviates when the operating frequency exceeds 20 THz. Furthermore, the proposed memristor model can be customized in terms of set/reset voltage, operating frequency and R_off⁄R_on , and has been verified for use in high speed switches with switching speeds of 19.5 ps. Furthermore, this research fills the gap in ultra-high-frequency memristor modeling, offering valuable insights and guidance for the utilization of memristors in the 6G technology and ultra-high frequency fields.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad14ed\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad14ed","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In the context of sixth-generation (6G) wireless communications technology, advanced radio-frequency (RF) switches are required to accommodate high-frequency terahertz range and complex modulation techniques. This paper proposes a flexible charge-controlled memristor model specifically designed for ultra-high-frequency applications. It describes in detail the derivation of the behavior model of the proposed memristor circuit. The memristor circuit model is built around four inverters, two multipliers, one integrator, one adder, and one differentiator. Through PSPICE simulation, the typical hysteresis loop of the memristor is thoroughly analyzed, demonstrating its suitability for use in wireless communication systems. The model exhibits a good typical hysteresis loop that operates over a wide frequency range from 100 kHz to 20 THz, meeting the specific requirements of terahertz applications. Compared to existing memristor designs, it operates at a much higher frequency. However, the zero crossing of the typical hysteresis loop deviates when the operating frequency exceeds 20 THz. Furthermore, the proposed memristor model can be customized in terms of set/reset voltage, operating frequency and R_off⁄R_on , and has been verified for use in high speed switches with switching speeds of 19.5 ps. Furthermore, this research fills the gap in ultra-high-frequency memristor modeling, offering valuable insights and guidance for the utilization of memristors in the 6G technology and ultra-high frequency fields.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.