{"title":"用于甘油分解-酯化棕榈硬脂-油脂混合物的高剪切反应器:反应动力学和物理性质","authors":"Inasanti Pandan Wangi, Supriyanto, Hary Sulistyo, Chusnul Hidayat","doi":"10.1002/aocs.12803","DOIUrl":null,"url":null,"abstract":"<p>Structured lipids containing high monoacylglycerol (MAG) and diacylglycerol (DAG) (SLs-MDAG) were synthesized by chemical glycerolysis-interesterification using sodium metasilicate as the catalyst in High Shear Reactor (HSR). The objective of this research was to investigate the effect of temperature on the glycerolysis-interesterification kinetics at relatively low temperatures in an HSR and the physical product properties. The reaction was performed using immiscible and highly viscous reactants at various temperatures (80–120°C) and a mixing rate of 2000 rpm for 5 h. Results showed that the reaction rate constant exponentially increased as temperature increased. Triacylglycerol (TAG) conversion was 2.5 fold greater at 110 and 120°C compared to lower reaction temperatures (80 and 90°C). MAG and DAG increased by about 18.3% and 13.4%, respectively, as the reaction temperature increased from 80 to 120°C. The product's melting point, hardness, and color were also improved by increasing temperature. In summary, SLs-MDAG could be produced at a relatively low temperature (110°C) using HSR. The glycerolysis-interesterification kinetic displayed an exponential relationship, even though it did not precisely fit the Arrhenius model.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High shear reactor for glycerolysis—Interesterification palm stearin-olein blend: Reaction kinetics and physical properties\",\"authors\":\"Inasanti Pandan Wangi, Supriyanto, Hary Sulistyo, Chusnul Hidayat\",\"doi\":\"10.1002/aocs.12803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Structured lipids containing high monoacylglycerol (MAG) and diacylglycerol (DAG) (SLs-MDAG) were synthesized by chemical glycerolysis-interesterification using sodium metasilicate as the catalyst in High Shear Reactor (HSR). The objective of this research was to investigate the effect of temperature on the glycerolysis-interesterification kinetics at relatively low temperatures in an HSR and the physical product properties. The reaction was performed using immiscible and highly viscous reactants at various temperatures (80–120°C) and a mixing rate of 2000 rpm for 5 h. Results showed that the reaction rate constant exponentially increased as temperature increased. Triacylglycerol (TAG) conversion was 2.5 fold greater at 110 and 120°C compared to lower reaction temperatures (80 and 90°C). MAG and DAG increased by about 18.3% and 13.4%, respectively, as the reaction temperature increased from 80 to 120°C. The product's melting point, hardness, and color were also improved by increasing temperature. In summary, SLs-MDAG could be produced at a relatively low temperature (110°C) using HSR. The glycerolysis-interesterification kinetic displayed an exponential relationship, even though it did not precisely fit the Arrhenius model.</p>\",\"PeriodicalId\":17182,\"journal\":{\"name\":\"Journal of the American Oil Chemists Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Oil Chemists Society\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12803\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12803","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
High shear reactor for glycerolysis—Interesterification palm stearin-olein blend: Reaction kinetics and physical properties
Structured lipids containing high monoacylglycerol (MAG) and diacylglycerol (DAG) (SLs-MDAG) were synthesized by chemical glycerolysis-interesterification using sodium metasilicate as the catalyst in High Shear Reactor (HSR). The objective of this research was to investigate the effect of temperature on the glycerolysis-interesterification kinetics at relatively low temperatures in an HSR and the physical product properties. The reaction was performed using immiscible and highly viscous reactants at various temperatures (80–120°C) and a mixing rate of 2000 rpm for 5 h. Results showed that the reaction rate constant exponentially increased as temperature increased. Triacylglycerol (TAG) conversion was 2.5 fold greater at 110 and 120°C compared to lower reaction temperatures (80 and 90°C). MAG and DAG increased by about 18.3% and 13.4%, respectively, as the reaction temperature increased from 80 to 120°C. The product's melting point, hardness, and color were also improved by increasing temperature. In summary, SLs-MDAG could be produced at a relatively low temperature (110°C) using HSR. The glycerolysis-interesterification kinetic displayed an exponential relationship, even though it did not precisely fit the Arrhenius model.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.