A Shyamala, S Murugeswari, G Mahendran, R Jothi Chitra
{"title":"基于机器学习的混合灰助鲸优化 COVID-19 预测。","authors":"A Shyamala, S Murugeswari, G Mahendran, R Jothi Chitra","doi":"10.1080/10255842.2023.2292008","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, COVID-19 (coronavirus) has been a huge influence on the socio and economic field. COVID-19 cases are seriously increasing day-day and also don't identified proper vaccine for COVID-19. Hence, COVID-19 is fast spreading virus and it causes more deaths. In order to address this, the work has proposed a machine learning (ML) scheme for the prediction of COVID-19 positive, negative, and deceased instances. Initially, the data is pre-processed by eliminating redundant and missing values. Then, the features are selected using hybrid grey assisted whale optimization algorithm (H-GAWOA). Finally, the classifier ANFIS (adaptive network-based fuzzy inference systems) is used for investigating the confirmed, survival and death rate of COVID-19. The performance is analysed on John Hopkins University dataset and the performances like MSE, RMSE, MAPE, and <i>R<sup>2</sup></i> are measured. In all the comparisons, the MSE value is very less for the proposed model. Particularly, in the deceased cases prediction, the MSE value is 0.00 for the proposed H-GAWOA-ANFIS. Finally, it is proved that the suggested model is able to generate the better results when contrast to the other approaches.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"388-397"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid grey assisted whale optimization based machine learning for the COVID-19 prediction.\",\"authors\":\"A Shyamala, S Murugeswari, G Mahendran, R Jothi Chitra\",\"doi\":\"10.1080/10255842.2023.2292008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, COVID-19 (coronavirus) has been a huge influence on the socio and economic field. COVID-19 cases are seriously increasing day-day and also don't identified proper vaccine for COVID-19. Hence, COVID-19 is fast spreading virus and it causes more deaths. In order to address this, the work has proposed a machine learning (ML) scheme for the prediction of COVID-19 positive, negative, and deceased instances. Initially, the data is pre-processed by eliminating redundant and missing values. Then, the features are selected using hybrid grey assisted whale optimization algorithm (H-GAWOA). Finally, the classifier ANFIS (adaptive network-based fuzzy inference systems) is used for investigating the confirmed, survival and death rate of COVID-19. The performance is analysed on John Hopkins University dataset and the performances like MSE, RMSE, MAPE, and <i>R<sup>2</sup></i> are measured. In all the comparisons, the MSE value is very less for the proposed model. Particularly, in the deceased cases prediction, the MSE value is 0.00 for the proposed H-GAWOA-ANFIS. Finally, it is proved that the suggested model is able to generate the better results when contrast to the other approaches.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"388-397\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2292008\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2292008","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Hybrid grey assisted whale optimization based machine learning for the COVID-19 prediction.
Recently, COVID-19 (coronavirus) has been a huge influence on the socio and economic field. COVID-19 cases are seriously increasing day-day and also don't identified proper vaccine for COVID-19. Hence, COVID-19 is fast spreading virus and it causes more deaths. In order to address this, the work has proposed a machine learning (ML) scheme for the prediction of COVID-19 positive, negative, and deceased instances. Initially, the data is pre-processed by eliminating redundant and missing values. Then, the features are selected using hybrid grey assisted whale optimization algorithm (H-GAWOA). Finally, the classifier ANFIS (adaptive network-based fuzzy inference systems) is used for investigating the confirmed, survival and death rate of COVID-19. The performance is analysed on John Hopkins University dataset and the performances like MSE, RMSE, MAPE, and R2 are measured. In all the comparisons, the MSE value is very less for the proposed model. Particularly, in the deceased cases prediction, the MSE value is 0.00 for the proposed H-GAWOA-ANFIS. Finally, it is proved that the suggested model is able to generate the better results when contrast to the other approaches.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.