{"title":"功能分级阀杆优化了固定和滑动表面耦合机制。","authors":"Mincong Wang, Yuzhu Wang, Yue Meng, Chenglong Pan","doi":"10.1080/10255842.2023.2293654","DOIUrl":null,"url":null,"abstract":"<p><p>Whether the optimization of fixed surface and sliding surface coupling mechanism is related to the hierarchical level of functionally graded porous stem is unknown. The functionally graded porous finite element stem models were constructed using tetrahedral microstructure with the porosities of 47-95%. The stress distribution for femoral bone gradually strengthened, the stress shielding was decreased along the increase of hierarchical levels of the stem after implantation. The coupling mechanism of fixed and sliding surfaces can be optimized by the functional gradient porous stem, the performance advantages become more prominent with the increase of hierarchical levels of the structure.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"464-476"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functionally graded stem optimizes the fixed and sliding surface coupling mechanism.\",\"authors\":\"Mincong Wang, Yuzhu Wang, Yue Meng, Chenglong Pan\",\"doi\":\"10.1080/10255842.2023.2293654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Whether the optimization of fixed surface and sliding surface coupling mechanism is related to the hierarchical level of functionally graded porous stem is unknown. The functionally graded porous finite element stem models were constructed using tetrahedral microstructure with the porosities of 47-95%. The stress distribution for femoral bone gradually strengthened, the stress shielding was decreased along the increase of hierarchical levels of the stem after implantation. The coupling mechanism of fixed and sliding surfaces can be optimized by the functional gradient porous stem, the performance advantages become more prominent with the increase of hierarchical levels of the structure.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"464-476\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2293654\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2293654","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Functionally graded stem optimizes the fixed and sliding surface coupling mechanism.
Whether the optimization of fixed surface and sliding surface coupling mechanism is related to the hierarchical level of functionally graded porous stem is unknown. The functionally graded porous finite element stem models were constructed using tetrahedral microstructure with the porosities of 47-95%. The stress distribution for femoral bone gradually strengthened, the stress shielding was decreased along the increase of hierarchical levels of the stem after implantation. The coupling mechanism of fixed and sliding surfaces can be optimized by the functional gradient porous stem, the performance advantages become more prominent with the increase of hierarchical levels of the structure.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.