LEV4REC:基于特征的工程 RSSE 方法

IF 1.7 3区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Claudio Di Sipio, Juri Di Rocco, Davide Di Ruscio, Phuong T. Nguyen
{"title":"LEV4REC:基于特征的工程 RSSE 方法","authors":"Claudio Di Sipio,&nbsp;Juri Di Rocco,&nbsp;Davide Di Ruscio,&nbsp;Phuong T. Nguyen","doi":"10.1016/j.cola.2023.101256","DOIUrl":null,"url":null,"abstract":"<div><p><span>To facilitate the development of recommender systems<span> for software engineering (RSSEs), this paper introduces LEV4REC, a model-driven approach supporting all RSSE development stages, from design to deployment. It enables parameter fine-tuning, enhancing the developer and </span></span>user experience by using a dedicated feature model for early configuration. We evaluated LEV4REC by applying it to two existing RSSEs based on different algorithms.</p><p>Results demonstrate its ability to recreate suitable recommendations and outperform a state-of-the-art approach. Qualitative findings from a focus group study further validate LEV4REC’s effectiveness, while indicating the need for extension points to support additional systems.</p></div>","PeriodicalId":48552,"journal":{"name":"Journal of Computer Languages","volume":"78 ","pages":"Article 101256"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LEV4REC: A feature-based approach to engineering RSSEs\",\"authors\":\"Claudio Di Sipio,&nbsp;Juri Di Rocco,&nbsp;Davide Di Ruscio,&nbsp;Phuong T. Nguyen\",\"doi\":\"10.1016/j.cola.2023.101256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>To facilitate the development of recommender systems<span> for software engineering (RSSEs), this paper introduces LEV4REC, a model-driven approach supporting all RSSE development stages, from design to deployment. It enables parameter fine-tuning, enhancing the developer and </span></span>user experience by using a dedicated feature model for early configuration. We evaluated LEV4REC by applying it to two existing RSSEs based on different algorithms.</p><p>Results demonstrate its ability to recreate suitable recommendations and outperform a state-of-the-art approach. Qualitative findings from a focus group study further validate LEV4REC’s effectiveness, while indicating the need for extension points to support additional systems.</p></div>\",\"PeriodicalId\":48552,\"journal\":{\"name\":\"Journal of Computer Languages\",\"volume\":\"78 \",\"pages\":\"Article 101256\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Languages\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590118423000667\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Languages","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590118423000667","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

为了促进软件工程推荐系统(RSSE)的开发,本文介绍了 LEV4REC,这是一种模型驱动方法,支持从设计到部署的所有 RSSE 开发阶段。它可以进行参数微调,通过使用专用功能模型进行早期配置来增强开发人员和用户的体验。我们将 LEV4REC 应用于两个基于不同算法的现有 RSSE,对其进行了评估。结果表明,LEV4REC 能够重新创建合适的建议,并优于最先进的方法。焦点小组的定性研究结果进一步验证了 LEV4REC 的有效性,同时也表明需要扩展点来支持其他系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LEV4REC: A feature-based approach to engineering RSSEs

To facilitate the development of recommender systems for software engineering (RSSEs), this paper introduces LEV4REC, a model-driven approach supporting all RSSE development stages, from design to deployment. It enables parameter fine-tuning, enhancing the developer and user experience by using a dedicated feature model for early configuration. We evaluated LEV4REC by applying it to two existing RSSEs based on different algorithms.

Results demonstrate its ability to recreate suitable recommendations and outperform a state-of-the-art approach. Qualitative findings from a focus group study further validate LEV4REC’s effectiveness, while indicating the need for extension points to support additional systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer Languages
Journal of Computer Languages Computer Science-Computer Networks and Communications
CiteScore
5.00
自引率
13.60%
发文量
36
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信