Fei Chu, Hongzhuan Chen, Zheng Zhou, Changlei Feng, Tao Zhang
{"title":"自传播互连技术在航空航天用硅光收发器模块中的应用研究","authors":"Fei Chu, Hongzhuan Chen, Zheng Zhou, Changlei Feng, Tao Zhang","doi":"10.1108/ssmt-10-2023-0056","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This paper aims to investigate the bonding of the photonic integrated circuit (PIC) chip with the heat sink using the AlNi self-propagating soldering method.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Compared to industrial optical modules, optical modules for aerospace applications require better reliability and stability, which is hard to achieve via the dispensing adhesive process that is used for traditional industrial optical modules. In this paper, 25 µm SAC305 solder foils and the AlNi nanofoil heat source were used to bond the back of the PIC chip with the heat sink. The temperature field and temperature history were analyzed by the finite element analysis (FEA) method. The junction-to-case thermal resistance is 0.0353°C/W and reduced by 85% compared with the UV hybrid epoxy joint.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The self-propagating reaction ends within 2.82 ms. The maximum temperature in the PIC operating area during the process is 368.5°C. The maximum heating and cooling rates of the solder were 1.39 × 107°C/s and −5.15 × 106°C/s, respectively. The microstructure of SAC305 under self-propagating reaction heating is more refined than the microstructure of SAC305 under reflow. The porosity of the heat sink-SAC305-PIC chip self-propagating joint is only 4.7%. Several metastable phases appear as AuSn3.4 and AgSn3.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>A new bonding technology was used to form the bonding between the PIC chip with the heat sink for the aerospace optical module. The reliability and thermal resistance of the joint are better than that of the UV hybrid epoxy joint.</p><!--/ Abstract__block -->","PeriodicalId":49499,"journal":{"name":"Soldering & Surface Mount Technology","volume":"140 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The research on the application of self-propagating interconnection technology in silicon optical transceiver module for aerospace\",\"authors\":\"Fei Chu, Hongzhuan Chen, Zheng Zhou, Changlei Feng, Tao Zhang\",\"doi\":\"10.1108/ssmt-10-2023-0056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This paper aims to investigate the bonding of the photonic integrated circuit (PIC) chip with the heat sink using the AlNi self-propagating soldering method.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>Compared to industrial optical modules, optical modules for aerospace applications require better reliability and stability, which is hard to achieve via the dispensing adhesive process that is used for traditional industrial optical modules. In this paper, 25 µm SAC305 solder foils and the AlNi nanofoil heat source were used to bond the back of the PIC chip with the heat sink. The temperature field and temperature history were analyzed by the finite element analysis (FEA) method. The junction-to-case thermal resistance is 0.0353°C/W and reduced by 85% compared with the UV hybrid epoxy joint.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The self-propagating reaction ends within 2.82 ms. The maximum temperature in the PIC operating area during the process is 368.5°C. The maximum heating and cooling rates of the solder were 1.39 × 107°C/s and −5.15 × 106°C/s, respectively. The microstructure of SAC305 under self-propagating reaction heating is more refined than the microstructure of SAC305 under reflow. The porosity of the heat sink-SAC305-PIC chip self-propagating joint is only 4.7%. Several metastable phases appear as AuSn3.4 and AgSn3.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>A new bonding technology was used to form the bonding between the PIC chip with the heat sink for the aerospace optical module. The reliability and thermal resistance of the joint are better than that of the UV hybrid epoxy joint.</p><!--/ Abstract__block -->\",\"PeriodicalId\":49499,\"journal\":{\"name\":\"Soldering & Surface Mount Technology\",\"volume\":\"140 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soldering & Surface Mount Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/ssmt-10-2023-0056\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soldering & Surface Mount Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/ssmt-10-2023-0056","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The research on the application of self-propagating interconnection technology in silicon optical transceiver module for aerospace
Purpose
This paper aims to investigate the bonding of the photonic integrated circuit (PIC) chip with the heat sink using the AlNi self-propagating soldering method.
Design/methodology/approach
Compared to industrial optical modules, optical modules for aerospace applications require better reliability and stability, which is hard to achieve via the dispensing adhesive process that is used for traditional industrial optical modules. In this paper, 25 µm SAC305 solder foils and the AlNi nanofoil heat source were used to bond the back of the PIC chip with the heat sink. The temperature field and temperature history were analyzed by the finite element analysis (FEA) method. The junction-to-case thermal resistance is 0.0353°C/W and reduced by 85% compared with the UV hybrid epoxy joint.
Findings
The self-propagating reaction ends within 2.82 ms. The maximum temperature in the PIC operating area during the process is 368.5°C. The maximum heating and cooling rates of the solder were 1.39 × 107°C/s and −5.15 × 106°C/s, respectively. The microstructure of SAC305 under self-propagating reaction heating is more refined than the microstructure of SAC305 under reflow. The porosity of the heat sink-SAC305-PIC chip self-propagating joint is only 4.7%. Several metastable phases appear as AuSn3.4 and AgSn3.
Originality/value
A new bonding technology was used to form the bonding between the PIC chip with the heat sink for the aerospace optical module. The reliability and thermal resistance of the joint are better than that of the UV hybrid epoxy joint.
期刊介绍:
Soldering & Surface Mount Technology seeks to make an important contribution to the advancement of research and application within the technical body of knowledge and expertise in this vital area. Soldering & Surface Mount Technology compliments its sister publications; Circuit World and Microelectronics International.
The journal covers all aspects of SMT from alloys, pastes and fluxes, to reliability and environmental effects, and is currently providing an important dissemination route for new knowledge on lead-free solders and processes. The journal comprises a multidisciplinary study of the key materials and technologies used to assemble state of the art functional electronic devices. The key focus is on assembling devices and interconnecting components via soldering, whilst also embracing a broad range of related approaches.