用于光催化氢气进化和二氧化碳还原的 g-C3N4 改性技术的最新进展

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Garima Rana, Pooja Dhiman, Amit Kumar, Elmuez A Dawi, Gaurav Sharma
{"title":"用于光催化氢气进化和二氧化碳还原的 g-C3N4 改性技术的最新进展","authors":"Garima Rana, Pooja Dhiman, Amit Kumar, Elmuez A Dawi, Gaurav Sharma","doi":"10.1088/1361-6641/ad0eea","DOIUrl":null,"url":null,"abstract":"Photocatalytic H<sub>2</sub> evolution and CO<sub>2</sub> reduction are promising technologies for addressing environmental and energy issues. g-C<sub>3</sub>N<sub>4</sub> is one of most promising materials to form improved catalysts because of its exceptional electrical structure, physical and chemical characteristics, and distinctive metal-free feature. This article provides a summary of current advancements in g-C<sub>3</sub>N<sub>4</sub>-based catalysts from innovative design approaches and their applications. Hydrogen evolution has reached 6305.18 <italic toggle=\"yes\">µ</italic>mol g<sup>−1</sup> h<sup>−1</sup> and &gt;9 h of stability using the SnS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunction. Additionally, the ZnO/Au/g-C<sub>3</sub>N<sub>4</sub> maintains a constant CO generation rate of 689.7 mol m<sup>−2</sup> during the 8 h reaction. To fully understand the interior relationship of theory–structure performance on g-C<sub>3</sub>N<sub>4</sub>-based materials, modifications are studied simultaneously. Furthermore, the synthesis of g-C<sub>3</sub>N<sub>4</sub> and g-C<sub>3</sub>N<sub>4</sub>-based materials, as well as their respective instances, have been reported. The reduction of CO<sub>2</sub> and H<sub>2</sub> generation is summarized. Lastly, a short overview of the present issues and potential alternatives for g-C<sub>3</sub>N<sub>4</sub>-based materials is provided.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"6 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent progress in modifications of g-C3N4 for photocatalytic hydrogen evolution and CO2 reduction\",\"authors\":\"Garima Rana, Pooja Dhiman, Amit Kumar, Elmuez A Dawi, Gaurav Sharma\",\"doi\":\"10.1088/1361-6641/ad0eea\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photocatalytic H<sub>2</sub> evolution and CO<sub>2</sub> reduction are promising technologies for addressing environmental and energy issues. g-C<sub>3</sub>N<sub>4</sub> is one of most promising materials to form improved catalysts because of its exceptional electrical structure, physical and chemical characteristics, and distinctive metal-free feature. This article provides a summary of current advancements in g-C<sub>3</sub>N<sub>4</sub>-based catalysts from innovative design approaches and their applications. Hydrogen evolution has reached 6305.18 <italic toggle=\\\"yes\\\">µ</italic>mol g<sup>−1</sup> h<sup>−1</sup> and &gt;9 h of stability using the SnS<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> heterojunction. Additionally, the ZnO/Au/g-C<sub>3</sub>N<sub>4</sub> maintains a constant CO generation rate of 689.7 mol m<sup>−2</sup> during the 8 h reaction. To fully understand the interior relationship of theory–structure performance on g-C<sub>3</sub>N<sub>4</sub>-based materials, modifications are studied simultaneously. Furthermore, the synthesis of g-C<sub>3</sub>N<sub>4</sub> and g-C<sub>3</sub>N<sub>4</sub>-based materials, as well as their respective instances, have been reported. The reduction of CO<sub>2</sub> and H<sub>2</sub> generation is summarized. Lastly, a short overview of the present issues and potential alternatives for g-C<sub>3</sub>N<sub>4</sub>-based materials is provided.\",\"PeriodicalId\":21585,\"journal\":{\"name\":\"Semiconductor Science and Technology\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad0eea\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad0eea","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

光催化 H2 演化和二氧化碳还原是解决环境和能源问题的前景广阔的技术。g-C3N4 因其特殊的电学结构、物理和化学特性以及独特的无金属特性,是最有希望形成改良催化剂的材料之一。本文从创新设计方法及其应用出发,概述了目前在基于 g-C3N4 的催化剂方面取得的进展。利用 SnS2/g-C3N4 异质结,氢气进化达到了 6305.18 µmol g-1 h-1 和 9 h 的稳定性。此外,在 8 小时的反应过程中,ZnO/Au/g-C3N4 保持了 689.7 mol m-2 的恒定 CO 生成率。为了充分理解基于 g-C3N4 材料的理论-结构性能的内部关系,我们同时对改性进行了研究。此外,还报道了 g-C3N4 和 g-C3N4 基材料的合成及其各自的实例。此外,还总结了二氧化碳和 H2 生成的减少情况。最后,简要概述了 g-C3N4 基材料的当前问题和潜在替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent progress in modifications of g-C3N4 for photocatalytic hydrogen evolution and CO2 reduction
Photocatalytic H2 evolution and CO2 reduction are promising technologies for addressing environmental and energy issues. g-C3N4 is one of most promising materials to form improved catalysts because of its exceptional electrical structure, physical and chemical characteristics, and distinctive metal-free feature. This article provides a summary of current advancements in g-C3N4-based catalysts from innovative design approaches and their applications. Hydrogen evolution has reached 6305.18 µmol g−1 h−1 and >9 h of stability using the SnS2/g-C3N4 heterojunction. Additionally, the ZnO/Au/g-C3N4 maintains a constant CO generation rate of 689.7 mol m−2 during the 8 h reaction. To fully understand the interior relationship of theory–structure performance on g-C3N4-based materials, modifications are studied simultaneously. Furthermore, the synthesis of g-C3N4 and g-C3N4-based materials, as well as their respective instances, have been reported. The reduction of CO2 and H2 generation is summarized. Lastly, a short overview of the present issues and potential alternatives for g-C3N4-based materials is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Semiconductor Science and Technology
Semiconductor Science and Technology 工程技术-材料科学:综合
CiteScore
4.30
自引率
5.30%
发文量
216
审稿时长
2.4 months
期刊介绍: Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic. The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including: fundamental properties materials and nanostructures devices and applications fabrication and processing new analytical techniques simulation emerging fields: materials and devices for quantum technologies hybrid structures and devices 2D and topological materials metamaterials semiconductors for energy flexible electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信