利用铜钡锡硫化物作为背表面场层和带隙分级技术提高 Cu(In(1-x)Ga x )Se2 太阳能电池的效率

IF 1.9 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Alok Kumar Patel, Rajan Mishra, Sanjay Kumar Soni
{"title":"利用铜钡锡硫化物作为背表面场层和带隙分级技术提高 Cu(In(1-x)Ga x )Se2 太阳能电池的效率","authors":"Alok Kumar Patel, Rajan Mishra, Sanjay Kumar Soni","doi":"10.1088/1361-6641/ad0e7f","DOIUrl":null,"url":null,"abstract":"This work proposes the simulation of graded <inline-formula>\n<tex-math><?CDATA ${\\boldsymbol{Cu}}\\left( {{\\boldsymbol{I}}{{\\boldsymbol{n}}_{1 - {\\boldsymbol{x}}}}{\\boldsymbol{G}}{{\\boldsymbol{a}}_{\\boldsymbol{x}}}} \\right){\\boldsymbol{S}}{{\\boldsymbol{e}}_2}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"bold-italic\">C</mml:mi><mml:mi mathvariant=\"bold-italic\">u</mml:mi></mml:mrow><mml:mfenced close=\")\" open=\"(\"><mml:mrow><mml:mrow><mml:mi mathvariant=\"bold-italic\">I</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"bold-italic\">n</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mrow><mml:mi mathvariant=\"bold-italic\">x</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:mi mathvariant=\"bold-italic\">G</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"bold-italic\">a</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"bold-italic\">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:mfenced><mml:mrow><mml:mi mathvariant=\"bold-italic\">S</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"bold-italic\">e</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"sstad0e7fieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>–based solar cell with copper barium tin sulfide (CBTS) compounds as a back surface field (BSF) layer using the SCAPS-1D software. The CBTS BSF layer reduces the charge carrier losses on the back contact side and creates an extra BSF that helps in extracting holes toward the back contact. To utilize the maximum spectrum absorption range, three different grading configurations were analyzed by varying the stoichiometry of <inline-formula>\n<tex-math><?CDATA ${\\boldsymbol{Cu}}\\left( {{\\boldsymbol{I}}{{\\boldsymbol{n}}_{1 - {\\boldsymbol{x}}}}{\\boldsymbol{G}}{{\\boldsymbol{a}}_{\\boldsymbol{x}}}} \\right){\\boldsymbol{S}}{{\\boldsymbol{e}}_2}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"bold-italic\">C</mml:mi><mml:mi mathvariant=\"bold-italic\">u</mml:mi></mml:mrow><mml:mfenced close=\")\" open=\"(\"><mml:mrow><mml:mrow><mml:mi mathvariant=\"bold-italic\">I</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"bold-italic\">n</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mrow><mml:mi mathvariant=\"bold-italic\">x</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:mi mathvariant=\"bold-italic\">G</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"bold-italic\">a</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"bold-italic\">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:mfenced><mml:mrow><mml:mi mathvariant=\"bold-italic\">S</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\"bold-italic\">e</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>\n<inline-graphic xlink:href=\"sstad0e7fieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. This grading technique significantly improves the device performance such as open circuit voltage (<italic toggle=\"yes\">V</italic>\n<sub>oc</sub>), short circuit current density (<italic toggle=\"yes\">J</italic>\n<sub>sc</sub>), fill factor (FF), and power conversion efficiency by changing the Ga content in the CIGS material. Furthermore, the impact of interface defect recombination velocity at the WSSe/graded-CIGS interface, acceptor density, and bulk defect in the CIGS layer on the device’s performance have been analyzed. The insertion of CBTS as a BSF layer and the bandgap grading technique yield a maximum efficiency of 31.08% for the proposed solar cell. These results will be helpful in the fabrication of highly efficient bandgap graded-CIGS solar cells.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"17 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency improvement of Cu(In(1−x)Ga x )Se2 solar cell using copper barium tin sulfide as back surface field layer and bandgap grading technique\",\"authors\":\"Alok Kumar Patel, Rajan Mishra, Sanjay Kumar Soni\",\"doi\":\"10.1088/1361-6641/ad0e7f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes the simulation of graded <inline-formula>\\n<tex-math><?CDATA ${\\\\boldsymbol{Cu}}\\\\left( {{\\\\boldsymbol{I}}{{\\\\boldsymbol{n}}_{1 - {\\\\boldsymbol{x}}}}{\\\\boldsymbol{G}}{{\\\\boldsymbol{a}}_{\\\\boldsymbol{x}}}} \\\\right){\\\\boldsymbol{S}}{{\\\\boldsymbol{e}}_2}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">C</mml:mi><mml:mi mathvariant=\\\"bold-italic\\\">u</mml:mi></mml:mrow><mml:mfenced close=\\\")\\\" open=\\\"(\\\"><mml:mrow><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">I</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">n</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">x</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">G</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">a</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:mfenced><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">S</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">e</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"sstad0e7fieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>–based solar cell with copper barium tin sulfide (CBTS) compounds as a back surface field (BSF) layer using the SCAPS-1D software. The CBTS BSF layer reduces the charge carrier losses on the back contact side and creates an extra BSF that helps in extracting holes toward the back contact. To utilize the maximum spectrum absorption range, three different grading configurations were analyzed by varying the stoichiometry of <inline-formula>\\n<tex-math><?CDATA ${\\\\boldsymbol{Cu}}\\\\left( {{\\\\boldsymbol{I}}{{\\\\boldsymbol{n}}_{1 - {\\\\boldsymbol{x}}}}{\\\\boldsymbol{G}}{{\\\\boldsymbol{a}}_{\\\\boldsymbol{x}}}} \\\\right){\\\\boldsymbol{S}}{{\\\\boldsymbol{e}}_2}$?></tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">C</mml:mi><mml:mi mathvariant=\\\"bold-italic\\\">u</mml:mi></mml:mrow><mml:mfenced close=\\\")\\\" open=\\\"(\\\"><mml:mrow><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">I</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">n</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">x</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">G</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">a</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:mfenced><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">S</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant=\\\"bold-italic\\\">e</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>\\n<inline-graphic xlink:href=\\\"sstad0e7fieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. This grading technique significantly improves the device performance such as open circuit voltage (<italic toggle=\\\"yes\\\">V</italic>\\n<sub>oc</sub>), short circuit current density (<italic toggle=\\\"yes\\\">J</italic>\\n<sub>sc</sub>), fill factor (FF), and power conversion efficiency by changing the Ga content in the CIGS material. Furthermore, the impact of interface defect recombination velocity at the WSSe/graded-CIGS interface, acceptor density, and bulk defect in the CIGS layer on the device’s performance have been analyzed. The insertion of CBTS as a BSF layer and the bandgap grading technique yield a maximum efficiency of 31.08% for the proposed solar cell. These results will be helpful in the fabrication of highly efficient bandgap graded-CIGS solar cells.\",\"PeriodicalId\":21585,\"journal\":{\"name\":\"Semiconductor Science and Technology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad0e7f\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad0e7f","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用 SCAPS-1D 软件模拟了以铜钡锡硫化物(CBTS)化合物为背表面场(BSF)层的分级 CuIn1-xGaxSe2 太阳能电池。CBTS BSF 层可减少背接触面上的电荷载流子损耗,并产生额外的 BSF,有助于向背接触面提取空穴。为了利用最大光谱吸收范围,通过改变 CuIn1-xGaxSe2 的化学计量,分析了三种不同的分级配置。这种分级技术通过改变 CIGS 材料中的镓含量,大大提高了器件性能,如开路电压(Voc)、短路电流密度(Jsc)、填充因子(FF)和功率转换效率。此外,还分析了 WSSe/分级 CIGS 界面缺陷重组速度、受体密度和 CIGS 层中的块状缺陷对器件性能的影响。插入 CBTS 作为 BSF 层和带隙分级技术使拟议太阳能电池的最高效率达到 31.08%。这些结果将有助于制造高效带隙分级 CIGS 太阳能电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficiency improvement of Cu(In(1−x)Ga x )Se2 solar cell using copper barium tin sulfide as back surface field layer and bandgap grading technique
This work proposes the simulation of graded CuIn1xGaxSe2 –based solar cell with copper barium tin sulfide (CBTS) compounds as a back surface field (BSF) layer using the SCAPS-1D software. The CBTS BSF layer reduces the charge carrier losses on the back contact side and creates an extra BSF that helps in extracting holes toward the back contact. To utilize the maximum spectrum absorption range, three different grading configurations were analyzed by varying the stoichiometry of CuIn1xGaxSe2 . This grading technique significantly improves the device performance such as open circuit voltage (V oc), short circuit current density (J sc), fill factor (FF), and power conversion efficiency by changing the Ga content in the CIGS material. Furthermore, the impact of interface defect recombination velocity at the WSSe/graded-CIGS interface, acceptor density, and bulk defect in the CIGS layer on the device’s performance have been analyzed. The insertion of CBTS as a BSF layer and the bandgap grading technique yield a maximum efficiency of 31.08% for the proposed solar cell. These results will be helpful in the fabrication of highly efficient bandgap graded-CIGS solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Semiconductor Science and Technology
Semiconductor Science and Technology 工程技术-材料科学:综合
CiteScore
4.30
自引率
5.30%
发文量
216
审稿时长
2.4 months
期刊介绍: Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic. The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including: fundamental properties materials and nanostructures devices and applications fabrication and processing new analytical techniques simulation emerging fields: materials and devices for quantum technologies hybrid structures and devices 2D and topological materials metamaterials semiconductors for energy flexible electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信