{"title":"利用基于神经网络的方法,在具有参考价格效应的竞争条件下为差异化产品动态定价","authors":"Parisa Famil Alamdar, Abbas Seifi","doi":"10.1057/s41272-023-00444-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we analyze the dynamic-pricing decisions of differentiated products for retailers operating in a competitive environment, for a finite-time horizon, limited initial inventory, and in the presence of the reference effect. Customers learn from the past prices of retailers and form their estimate of sales prices, called the reference price effect, and use it to make a decision on choosing a retailer to make a purchase. The demand is uncertain, and the customer choice behavior is modeled based on a Multinomial Logit model, modified to incorporate the reference effect. The complexity of the problem increases under conditions of competition and demand uncertainty and cannot be analyzed using conventional methods. Therefore, we have used a neural network-based algorithm called Revenue-Based Neural Network (RBNN) to dynamically calculate the competitive price in order to increase the retailer’s revenue. We have analyzed the effect of competition and the performance of RBNN algorithm under two scenarios: a monopolistic situation in which a retailer uses the RBNN policy to maximize its revenue, and a duopolistic situation in which one retailer uses the RBNN strategy and the other uses an adaptive policy called Derivative Following (DF). The results of the experiments show that the pricing policy under duopolistic conditions highly affects the income of retailers in the presence of reference price. The RBNN policy outperforms the DF policy due to the learning process on the customers’ reference price. By charging higher prices in the RBNN strategy, the seller trades off the current revenue with the long-term revenue resulting from formation of higher levels of the reference price in customers’ minds and earns more revenue than its competitor overall.</p>","PeriodicalId":46686,"journal":{"name":"Journal of Revenue and Pricing Management","volume":"14 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic pricing of differentiated products under competition with reference price effects using a neural network-based approach\",\"authors\":\"Parisa Famil Alamdar, Abbas Seifi\",\"doi\":\"10.1057/s41272-023-00444-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we analyze the dynamic-pricing decisions of differentiated products for retailers operating in a competitive environment, for a finite-time horizon, limited initial inventory, and in the presence of the reference effect. Customers learn from the past prices of retailers and form their estimate of sales prices, called the reference price effect, and use it to make a decision on choosing a retailer to make a purchase. The demand is uncertain, and the customer choice behavior is modeled based on a Multinomial Logit model, modified to incorporate the reference effect. The complexity of the problem increases under conditions of competition and demand uncertainty and cannot be analyzed using conventional methods. Therefore, we have used a neural network-based algorithm called Revenue-Based Neural Network (RBNN) to dynamically calculate the competitive price in order to increase the retailer’s revenue. We have analyzed the effect of competition and the performance of RBNN algorithm under two scenarios: a monopolistic situation in which a retailer uses the RBNN policy to maximize its revenue, and a duopolistic situation in which one retailer uses the RBNN strategy and the other uses an adaptive policy called Derivative Following (DF). The results of the experiments show that the pricing policy under duopolistic conditions highly affects the income of retailers in the presence of reference price. The RBNN policy outperforms the DF policy due to the learning process on the customers’ reference price. By charging higher prices in the RBNN strategy, the seller trades off the current revenue with the long-term revenue resulting from formation of higher levels of the reference price in customers’ minds and earns more revenue than its competitor overall.</p>\",\"PeriodicalId\":46686,\"journal\":{\"name\":\"Journal of Revenue and Pricing Management\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Revenue and Pricing Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1057/s41272-023-00444-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Revenue and Pricing Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1057/s41272-023-00444-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Dynamic pricing of differentiated products under competition with reference price effects using a neural network-based approach
In this paper, we analyze the dynamic-pricing decisions of differentiated products for retailers operating in a competitive environment, for a finite-time horizon, limited initial inventory, and in the presence of the reference effect. Customers learn from the past prices of retailers and form their estimate of sales prices, called the reference price effect, and use it to make a decision on choosing a retailer to make a purchase. The demand is uncertain, and the customer choice behavior is modeled based on a Multinomial Logit model, modified to incorporate the reference effect. The complexity of the problem increases under conditions of competition and demand uncertainty and cannot be analyzed using conventional methods. Therefore, we have used a neural network-based algorithm called Revenue-Based Neural Network (RBNN) to dynamically calculate the competitive price in order to increase the retailer’s revenue. We have analyzed the effect of competition and the performance of RBNN algorithm under two scenarios: a monopolistic situation in which a retailer uses the RBNN policy to maximize its revenue, and a duopolistic situation in which one retailer uses the RBNN strategy and the other uses an adaptive policy called Derivative Following (DF). The results of the experiments show that the pricing policy under duopolistic conditions highly affects the income of retailers in the presence of reference price. The RBNN policy outperforms the DF policy due to the learning process on the customers’ reference price. By charging higher prices in the RBNN strategy, the seller trades off the current revenue with the long-term revenue resulting from formation of higher levels of the reference price in customers’ minds and earns more revenue than its competitor overall.
期刊介绍:
The?Journal of Revenue and Pricing Management?serves the community of researchers and practitioners dedicated to improving understanding through insight and real life situations. Each article emphasizes meaningful answers to problems whether cutting edge science or real solutions. The journal places an emphasis disseminating the best articles from the best minds and benchmarked businesses within the field of Revenue Management and Pricing.Revenue management (RM) also known as Yield Management (YM) is a management activity that marries the diverse disciplines of operations research/management science analytics economics human resource management software development marketing economics e-commerce consumer behaviour and consulting to manage demand for a firm's products or services with the goal of profit maximisation. From a practitioner standpoint RM encompasses a range of activities related to demand management including pricing segmentation capacity and inventory allocation demand modelling and business process management.Journal of Revenue and Pricing Management?aims to:formulate and disseminate a body of knowledge called 'RM and pricing' to practitioners educators researchers and students;provide an international forum for a wide range of practical theoretical and applied research in the fields of RM and pricing;represent a multi-disciplinary set of views on key and emerging issues in RM and pricing;include a cross-section of methodologies and viewpoints on research including quantitative and qualitative approaches case studies and empirical and theoretical studies;encourage greater understanding and linkage between the fields of study related to revenue management and pricing;to publish new and original ideas on research policy and managementencourage and engage with professional communities to adopt the Journal as the place of knowledge excellence i.e. INFORMS Revenue Management & Pricing section AGIFORS and Revenue Management Society and Revenue Management and Pricing International Ltd.Published six times a year?Journal of Revenue and Pricing Management?publishes a wide range of peer-reviewed practice papers research articles and professional briefings written by industry experts - including:Practice papers - addressing the issues facing practitioners in industry and consultancyApplied research papers - from leading institutions on all areas of research of interest to practitioners and the implications for practiceCase studies - focusing on the real-life challenges and problems faced by major corporations how they were approached and what was learnedModels and theories - practical models and theories which are being used in revenue managementThoughts - assessment of the key issues new trends and future ideas by leading experts and practitionersApprentice - the publication of tomorrows ideas by students of todayBook/conference reviews - reviewing leading conferences and major new books on RM and pricingThe Journal is essential reading for senior professionals in private and public sector organisations and academic observers in universities and business schools - including:Pricing AnalystsRevenue ManagersHeads of Revenue ManagementHeads of Yield ManagementDirectors of PricingHeads of MarketingChief Operating OfficersCommercial DirectorsDirectors of SalesDirectors of OperationsHeads of ResearchPricing ConsultantsProfessorsLecturers