槲皮素通过叉头盒子 D3 信号通路对胃癌化疗耐药性的抑制作用

IF 0.7 4区 材料科学 Q3 Materials Science
Liqian Chang, Yuan Gao, Na An
{"title":"槲皮素通过叉头盒子 D3 信号通路对胃癌化疗耐药性的抑制作用","authors":"Liqian Chang, Yuan Gao, Na An","doi":"10.1166/mex.2023.2558","DOIUrl":null,"url":null,"abstract":"Most gastric cancer patients have cancer cell metastasis at the time of being diagnosed. Cisplatin chemotherapy can slow down the development of gastric cancer, but the drug resistance will develop after a long time of chemotherapy. Previous studies have found that quercetin improves\n resistance of chemotherapy drugs. Therefore, this study intends to explore quercetin’s role in gastric cancer. SGC-7901 drug-resistant cell line was cultured and intervened. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay assessed cell proliferation, cell survival\n rate, IC50 value and sensitivity along with analysis of cell apoptosis, proliferation by colony formation assay and qRT-PCR (real-time reverse transcription-PCR) and Western blot detection of FOXD3 (Forkhead box D3) levels. Gastric cancer xenograft tumor mouse model was established to assess\n its in vivo role. The drug-resistant cell model of gastric cancer was successfully constructed and quercetin inhibited cell survival to a certain extent and improved its chemosensitivity. The pro-apoptotic effect of quercetin on cisplatin chemotherapy resistance in gastric cancer is\n related to the increased FOXD3 level. Quercetin can directly regulate the expression of FOXD3, which is an activation effect. The inhibition rate of gastric cancer mice in vivo was the most prominent in the quercetin+drug resistance group. The tumor-bearing site was significantly reduced\n and the number of surviving mice was the highest, whose tumor volume was consistently lower than that of other groups. Conclusively, quercetin has a strong anti-tumor effect. It can inhibit gastric cancer cell activity and accelerate apoptosis by activating FOXD3 signaling pathway.","PeriodicalId":18318,"journal":{"name":"Materials Express","volume":" 2","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The inhibitory effect of quercetin on chemotherapeutic drug resistance of gastric cancer through forkhead box D3 signaling pathway\",\"authors\":\"Liqian Chang, Yuan Gao, Na An\",\"doi\":\"10.1166/mex.2023.2558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most gastric cancer patients have cancer cell metastasis at the time of being diagnosed. Cisplatin chemotherapy can slow down the development of gastric cancer, but the drug resistance will develop after a long time of chemotherapy. Previous studies have found that quercetin improves\\n resistance of chemotherapy drugs. Therefore, this study intends to explore quercetin’s role in gastric cancer. SGC-7901 drug-resistant cell line was cultured and intervened. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay assessed cell proliferation, cell survival\\n rate, IC50 value and sensitivity along with analysis of cell apoptosis, proliferation by colony formation assay and qRT-PCR (real-time reverse transcription-PCR) and Western blot detection of FOXD3 (Forkhead box D3) levels. Gastric cancer xenograft tumor mouse model was established to assess\\n its in vivo role. The drug-resistant cell model of gastric cancer was successfully constructed and quercetin inhibited cell survival to a certain extent and improved its chemosensitivity. The pro-apoptotic effect of quercetin on cisplatin chemotherapy resistance in gastric cancer is\\n related to the increased FOXD3 level. Quercetin can directly regulate the expression of FOXD3, which is an activation effect. The inhibition rate of gastric cancer mice in vivo was the most prominent in the quercetin+drug resistance group. The tumor-bearing site was significantly reduced\\n and the number of surviving mice was the highest, whose tumor volume was consistently lower than that of other groups. Conclusively, quercetin has a strong anti-tumor effect. It can inhibit gastric cancer cell activity and accelerate apoptosis by activating FOXD3 signaling pathway.\",\"PeriodicalId\":18318,\"journal\":{\"name\":\"Materials Express\",\"volume\":\" 2\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1166/mex.2023.2558\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1166/mex.2023.2558","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

大多数胃癌患者在确诊时都有癌细胞转移。顺铂化疗可以减缓胃癌的发展,但化疗时间长了会产生耐药性。先前的研究发现槲皮素可以改善化疗药物的耐药性。因此,本研究拟探讨槲皮素在胃癌中的作用。培养并干预SGC-7901耐药细胞株。MTT(3-(4,5-二甲基噻唑-2-酰基)-2,5-二苯基溴化四唑)法评估细胞增殖、细胞存活率、IC50值和敏感性,同时分析细胞凋亡、增殖情况(集落形成法、实时逆转录pcr)和Western blot检测FOXD3 (Forkhead box D3)水平。建立胃癌异种移植瘤小鼠模型,评价其在体内的作用。成功构建了胃癌耐药细胞模型,槲皮素在一定程度上抑制了细胞存活,提高了其化疗敏感性。槲皮素对胃癌顺铂化疗耐药的促凋亡作用与FOXD3水平升高有关。槲皮素可以直接调节FOXD3的表达,是一种激活作用。槲皮素+耐药组胃癌小鼠体内抑制率最显著。荷瘤部位明显减少,存活小鼠数量最多,肿瘤体积始终低于其他各组。槲皮素具有较强的抗肿瘤作用。通过激活FOXD3信号通路,抑制胃癌细胞活性,加速细胞凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The inhibitory effect of quercetin on chemotherapeutic drug resistance of gastric cancer through forkhead box D3 signaling pathway
Most gastric cancer patients have cancer cell metastasis at the time of being diagnosed. Cisplatin chemotherapy can slow down the development of gastric cancer, but the drug resistance will develop after a long time of chemotherapy. Previous studies have found that quercetin improves resistance of chemotherapy drugs. Therefore, this study intends to explore quercetin’s role in gastric cancer. SGC-7901 drug-resistant cell line was cultured and intervened. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay assessed cell proliferation, cell survival rate, IC50 value and sensitivity along with analysis of cell apoptosis, proliferation by colony formation assay and qRT-PCR (real-time reverse transcription-PCR) and Western blot detection of FOXD3 (Forkhead box D3) levels. Gastric cancer xenograft tumor mouse model was established to assess its in vivo role. The drug-resistant cell model of gastric cancer was successfully constructed and quercetin inhibited cell survival to a certain extent and improved its chemosensitivity. The pro-apoptotic effect of quercetin on cisplatin chemotherapy resistance in gastric cancer is related to the increased FOXD3 level. Quercetin can directly regulate the expression of FOXD3, which is an activation effect. The inhibition rate of gastric cancer mice in vivo was the most prominent in the quercetin+drug resistance group. The tumor-bearing site was significantly reduced and the number of surviving mice was the highest, whose tumor volume was consistently lower than that of other groups. Conclusively, quercetin has a strong anti-tumor effect. It can inhibit gastric cancer cell activity and accelerate apoptosis by activating FOXD3 signaling pathway.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Express
Materials Express NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
0.00%
发文量
69
审稿时长
>12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信