{"title":"牛奶蛋白诱发过敏性肠炎小鼠肠道微生物群变化和过敏性炎症的研究","authors":"Zhongmin Wang, Qiao Wu, Minchang Guan, Ze Li, Wei Pan, Weihong Tang","doi":"10.1093/femsle/fnad127","DOIUrl":null,"url":null,"abstract":"This study aimed to investigate the changes of gut microbiota and allergic inflammation in mice with allergic enteritis caused by milk protein. In this study, female BALB\\C mice in the whey protein (WP-sensitized) group were gavaged with WP and normal saline, the sham-sensitized group was given normal saline once a week for 5 weeks. One week later, the WP-sensitized mice were administered 60 mg β-lactoglobulin (BLG). The results showed that mice's body weight decreased, feces with loose and bloody, and systemic allergic reactions and ear swelling increased in the WP-sensitized group. The levels of WP-specific Ig, mMCP-1, calprotectin of feces, and inflammation-related factors in the WP-sensitized group were increased. WP-sensitized group intestine tissues were damaged severely and the expressions of ZO-1, Claudin-1 and Occludin reduced. The results of 16S rRNA sequencing showed that there were differences in operational taxonomic units (OUT) levels of gut microbes between the two groups, o_Clostridiales, c_Clostridia and f_Lachnospiraceae were more abundant in the WP-sensitized group. In conclusion, the WP sensitization can induce the allergic inflammation, intestinal injury and intestinal barrier dysfunction in mice, and the gut microbes were also changed, which provided a reference for the treatment of WP-sensitized mice.","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of gut microbiota changes and allergic inflammation of mice with milk protein-induced allergic enteritis\",\"authors\":\"Zhongmin Wang, Qiao Wu, Minchang Guan, Ze Li, Wei Pan, Weihong Tang\",\"doi\":\"10.1093/femsle/fnad127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to investigate the changes of gut microbiota and allergic inflammation in mice with allergic enteritis caused by milk protein. In this study, female BALB\\\\C mice in the whey protein (WP-sensitized) group were gavaged with WP and normal saline, the sham-sensitized group was given normal saline once a week for 5 weeks. One week later, the WP-sensitized mice were administered 60 mg β-lactoglobulin (BLG). The results showed that mice's body weight decreased, feces with loose and bloody, and systemic allergic reactions and ear swelling increased in the WP-sensitized group. The levels of WP-specific Ig, mMCP-1, calprotectin of feces, and inflammation-related factors in the WP-sensitized group were increased. WP-sensitized group intestine tissues were damaged severely and the expressions of ZO-1, Claudin-1 and Occludin reduced. The results of 16S rRNA sequencing showed that there were differences in operational taxonomic units (OUT) levels of gut microbes between the two groups, o_Clostridiales, c_Clostridia and f_Lachnospiraceae were more abundant in the WP-sensitized group. In conclusion, the WP sensitization can induce the allergic inflammation, intestinal injury and intestinal barrier dysfunction in mice, and the gut microbes were also changed, which provided a reference for the treatment of WP-sensitized mice.\",\"PeriodicalId\":12214,\"journal\":{\"name\":\"Fems Microbiology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fems Microbiology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsle/fnad127\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnad127","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Investigation of gut microbiota changes and allergic inflammation of mice with milk protein-induced allergic enteritis
This study aimed to investigate the changes of gut microbiota and allergic inflammation in mice with allergic enteritis caused by milk protein. In this study, female BALB\C mice in the whey protein (WP-sensitized) group were gavaged with WP and normal saline, the sham-sensitized group was given normal saline once a week for 5 weeks. One week later, the WP-sensitized mice were administered 60 mg β-lactoglobulin (BLG). The results showed that mice's body weight decreased, feces with loose and bloody, and systemic allergic reactions and ear swelling increased in the WP-sensitized group. The levels of WP-specific Ig, mMCP-1, calprotectin of feces, and inflammation-related factors in the WP-sensitized group were increased. WP-sensitized group intestine tissues were damaged severely and the expressions of ZO-1, Claudin-1 and Occludin reduced. The results of 16S rRNA sequencing showed that there were differences in operational taxonomic units (OUT) levels of gut microbes between the two groups, o_Clostridiales, c_Clostridia and f_Lachnospiraceae were more abundant in the WP-sensitized group. In conclusion, the WP sensitization can induce the allergic inflammation, intestinal injury and intestinal barrier dysfunction in mice, and the gut microbes were also changed, which provided a reference for the treatment of WP-sensitized mice.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.