Yunfei Lu, Xin Li, Long Yu*, Songlin Zhang, Degui Wang, Xiangyang Hao, Mingtai Sun and Suhua Wang*,
{"title":"用于智能决策识别和定量分析铬标样中的 Cr(III) 的机器学习算法","authors":"Yunfei Lu, Xin Li, Long Yu*, Songlin Zhang, Degui Wang, Xiangyang Hao, Mingtai Sun and Suhua Wang*, ","doi":"10.1021/acs.analchem.3c04878","DOIUrl":null,"url":null,"abstract":"<p >Cr(III) is a common oxidation state of chromium, and its presence in the environment can occur naturally or as a result of human activities, such as industrial processes, mining, and waste disposal. This article explores the application of machine learning algorithms for the intelligent decision recognition and quantification of Cr(III) in chromium speciation. Three different machine learning models, namely, the Decision Tree (DT) model, the PCA-SVM (Principal Component Analysis-Support Vector Machine) model, and the LDA (Linear Discriminant Analysis) model, were employed and evaluated for accurate and efficient classification of chromium concentrations based on their fluorescence responses. Furthermore, stepwise multiple linear regression analysis was utilized to achieve a more precise quantification of trivalent chromium concentrations through fluorescence visualization. The results demonstrate the potential of machine learning algorithms in accurately detecting and quantifying Cr(III) in chromium speciation with implications for environmental and industrial applications in chromium detection and quantification. The findings from this research pave the way for further exploration and implementation of these models in real-world scenarios, offering valuable insights into various environmental and industrial contexts.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"95 50","pages":"18635–18643"},"PeriodicalIF":6.7000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Algorithms for Intelligent Decision Recognition and Quantification of Cr(III) in Chromium Speciation\",\"authors\":\"Yunfei Lu, Xin Li, Long Yu*, Songlin Zhang, Degui Wang, Xiangyang Hao, Mingtai Sun and Suhua Wang*, \",\"doi\":\"10.1021/acs.analchem.3c04878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cr(III) is a common oxidation state of chromium, and its presence in the environment can occur naturally or as a result of human activities, such as industrial processes, mining, and waste disposal. This article explores the application of machine learning algorithms for the intelligent decision recognition and quantification of Cr(III) in chromium speciation. Three different machine learning models, namely, the Decision Tree (DT) model, the PCA-SVM (Principal Component Analysis-Support Vector Machine) model, and the LDA (Linear Discriminant Analysis) model, were employed and evaluated for accurate and efficient classification of chromium concentrations based on their fluorescence responses. Furthermore, stepwise multiple linear regression analysis was utilized to achieve a more precise quantification of trivalent chromium concentrations through fluorescence visualization. The results demonstrate the potential of machine learning algorithms in accurately detecting and quantifying Cr(III) in chromium speciation with implications for environmental and industrial applications in chromium detection and quantification. The findings from this research pave the way for further exploration and implementation of these models in real-world scenarios, offering valuable insights into various environmental and industrial contexts.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"95 50\",\"pages\":\"18635–18643\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.3c04878\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.3c04878","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Machine Learning Algorithms for Intelligent Decision Recognition and Quantification of Cr(III) in Chromium Speciation
Cr(III) is a common oxidation state of chromium, and its presence in the environment can occur naturally or as a result of human activities, such as industrial processes, mining, and waste disposal. This article explores the application of machine learning algorithms for the intelligent decision recognition and quantification of Cr(III) in chromium speciation. Three different machine learning models, namely, the Decision Tree (DT) model, the PCA-SVM (Principal Component Analysis-Support Vector Machine) model, and the LDA (Linear Discriminant Analysis) model, were employed and evaluated for accurate and efficient classification of chromium concentrations based on their fluorescence responses. Furthermore, stepwise multiple linear regression analysis was utilized to achieve a more precise quantification of trivalent chromium concentrations through fluorescence visualization. The results demonstrate the potential of machine learning algorithms in accurately detecting and quantifying Cr(III) in chromium speciation with implications for environmental and industrial applications in chromium detection and quantification. The findings from this research pave the way for further exploration and implementation of these models in real-world scenarios, offering valuable insights into various environmental and industrial contexts.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.