DeMichael D. Winfield, Steven C. Cermak, Roque L. Evangelista, Bryan R. Moser, Justin McKinney, Vince Pantalone
{"title":"一种高含油大豆油在润滑油和生物柴油中的应用评价","authors":"DeMichael D. Winfield, Steven C. Cermak, Roque L. Evangelista, Bryan R. Moser, Justin McKinney, Vince Pantalone","doi":"10.1002/aocs.12788","DOIUrl":null,"url":null,"abstract":"<p>Soybean oil is an abundant commodity crop that has garnered attention for its use as a feedstock for sustainable materials. Soybean oil is high in polyunsaturated fatty acid content, which can promote undesirable properties in biodiesel and lubricant applications. In this work, we characterized the fatty acid composition of commercial soybean oil along with two other soybean oil varieties, Ellis and TN18-4110. Ellis and commercial soybean oils had similar fatty acid compositions, while TN18-4110 was enriched in the monounsaturated oleic acid. Biodiesel and estolides were prepared from the three varieties and the relevant physical properties were measured. In comparison to commercial soybean diesel, both Ellis and TN18-4110 exhibited unique advantages. As estolide-based lubricants, all three varieties had advantageous cold flow properties, but TN18-4110 also possessed excellent oxidative stability and lower viscosity. The physical properties and structural property relationships of the biodiesel and estolides are discussed.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"101 5","pages":"493-499"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of a high oleic soybean oil variety in lubricant and biodiesel applications\",\"authors\":\"DeMichael D. Winfield, Steven C. Cermak, Roque L. Evangelista, Bryan R. Moser, Justin McKinney, Vince Pantalone\",\"doi\":\"10.1002/aocs.12788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Soybean oil is an abundant commodity crop that has garnered attention for its use as a feedstock for sustainable materials. Soybean oil is high in polyunsaturated fatty acid content, which can promote undesirable properties in biodiesel and lubricant applications. In this work, we characterized the fatty acid composition of commercial soybean oil along with two other soybean oil varieties, Ellis and TN18-4110. Ellis and commercial soybean oils had similar fatty acid compositions, while TN18-4110 was enriched in the monounsaturated oleic acid. Biodiesel and estolides were prepared from the three varieties and the relevant physical properties were measured. In comparison to commercial soybean diesel, both Ellis and TN18-4110 exhibited unique advantages. As estolide-based lubricants, all three varieties had advantageous cold flow properties, but TN18-4110 also possessed excellent oxidative stability and lower viscosity. The physical properties and structural property relationships of the biodiesel and estolides are discussed.</p>\",\"PeriodicalId\":17182,\"journal\":{\"name\":\"Journal of the American Oil Chemists Society\",\"volume\":\"101 5\",\"pages\":\"493-499\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Oil Chemists Society\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12788\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12788","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Evaluation of a high oleic soybean oil variety in lubricant and biodiesel applications
Soybean oil is an abundant commodity crop that has garnered attention for its use as a feedstock for sustainable materials. Soybean oil is high in polyunsaturated fatty acid content, which can promote undesirable properties in biodiesel and lubricant applications. In this work, we characterized the fatty acid composition of commercial soybean oil along with two other soybean oil varieties, Ellis and TN18-4110. Ellis and commercial soybean oils had similar fatty acid compositions, while TN18-4110 was enriched in the monounsaturated oleic acid. Biodiesel and estolides were prepared from the three varieties and the relevant physical properties were measured. In comparison to commercial soybean diesel, both Ellis and TN18-4110 exhibited unique advantages. As estolide-based lubricants, all three varieties had advantageous cold flow properties, but TN18-4110 also possessed excellent oxidative stability and lower viscosity. The physical properties and structural property relationships of the biodiesel and estolides are discussed.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.