{"title":"脾后皮层对复杂迷宫路径选择的贡献。","authors":"Tomohiro Hayashi , Nobuya Sato","doi":"10.1016/j.neures.2023.11.011","DOIUrl":null,"url":null,"abstract":"<div><p>The retrosplenial cortex (RSC) is a region involved in navigation. In this study, we investigated the role of the RSC in navigation in a large-scale environment where the destination is not visible from the current location. We used a large maze where the routes could be freely designed by inserting and removing plates. In Experiment 1, rats learned a specific route in the maze and then were tested with a shortcut route in addition to the learned route. The rats with RSC lesions utilized the shortcut faster than those in the control group. In Experiment 2, rats were initially trained to follow a specific route, and subsequently, we tested the effects of a small change in the environment on their route-following behavior. In the test, the rats with RSC lesions demonstrated more errors than those in the control group. This suggests that lesions in the RSC make navigation to a goal unstable. These findings suggest that the RSC may be involved in the ability to perform appropriate behavior at a segment on a learned route in a large-scale environment, which drives habitually following the learned route.</p></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"202 ","pages":"Pages 52-59"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168010223002067/pdfft?md5=7e40db166e66e1440e362b4d905bccab&pid=1-s2.0-S0168010223002067-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Contribution of the retrosplenial cortex to route selection in a complex maze\",\"authors\":\"Tomohiro Hayashi , Nobuya Sato\",\"doi\":\"10.1016/j.neures.2023.11.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The retrosplenial cortex (RSC) is a region involved in navigation. In this study, we investigated the role of the RSC in navigation in a large-scale environment where the destination is not visible from the current location. We used a large maze where the routes could be freely designed by inserting and removing plates. In Experiment 1, rats learned a specific route in the maze and then were tested with a shortcut route in addition to the learned route. The rats with RSC lesions utilized the shortcut faster than those in the control group. In Experiment 2, rats were initially trained to follow a specific route, and subsequently, we tested the effects of a small change in the environment on their route-following behavior. In the test, the rats with RSC lesions demonstrated more errors than those in the control group. This suggests that lesions in the RSC make navigation to a goal unstable. These findings suggest that the RSC may be involved in the ability to perform appropriate behavior at a segment on a learned route in a large-scale environment, which drives habitually following the learned route.</p></div>\",\"PeriodicalId\":19146,\"journal\":{\"name\":\"Neuroscience Research\",\"volume\":\"202 \",\"pages\":\"Pages 52-59\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168010223002067/pdfft?md5=7e40db166e66e1440e362b4d905bccab&pid=1-s2.0-S0168010223002067-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168010223002067\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168010223002067","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Contribution of the retrosplenial cortex to route selection in a complex maze
The retrosplenial cortex (RSC) is a region involved in navigation. In this study, we investigated the role of the RSC in navigation in a large-scale environment where the destination is not visible from the current location. We used a large maze where the routes could be freely designed by inserting and removing plates. In Experiment 1, rats learned a specific route in the maze and then were tested with a shortcut route in addition to the learned route. The rats with RSC lesions utilized the shortcut faster than those in the control group. In Experiment 2, rats were initially trained to follow a specific route, and subsequently, we tested the effects of a small change in the environment on their route-following behavior. In the test, the rats with RSC lesions demonstrated more errors than those in the control group. This suggests that lesions in the RSC make navigation to a goal unstable. These findings suggest that the RSC may be involved in the ability to perform appropriate behavior at a segment on a learned route in a large-scale environment, which drives habitually following the learned route.
期刊介绍:
The international journal publishing original full-length research articles, short communications, technical notes, and reviews on all aspects of neuroscience
Neuroscience Research is an international journal for high quality articles in all branches of neuroscience, from the molecular to the behavioral levels. The journal is published in collaboration with the Japan Neuroscience Society and is open to all contributors in the world.