基于依赖于动脉瘤直径和压力的弹性模量的升主动脉瘤力学。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Christos Manopoulos, Konstantinos Seferlis, Anastasios Raptis, Ilias Kouerinis, Dimitrios Mathioulakis
{"title":"基于依赖于动脉瘤直径和压力的弹性模量的升主动脉瘤力学。","authors":"Christos Manopoulos, Konstantinos Seferlis, Anastasios Raptis, Ilias Kouerinis, Dimitrios Mathioulakis","doi":"10.1080/10255842.2023.2285722","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanical stresses and strains are examined, in ascending thoracic aortic aneurysm (aTAA) models, in a patient-specific aTAA as well as in healthy thoracic aortic models, <i>via</i> Finite Element Analysis. The aneurysms are assumed spherical, 1.5 mm thick, with diameters between 47 mm and 80 mm, eccentrically positioned. The geometry and wall thickness distribution of the aorta along its length are based on open literature data for an average patient age of 66.25 years, accounting for the Body Surface Area (BSA) parameter. The vessel wall material is assumed isotropic and incompressible, with its Young's modulus varying with the aneurysm diameter and the applied intraluminal pressure (120 mmHg to 240 mmHg). In the aTAAs, peak stresses were found to increase nonlinearly with aneurysm diameter (for a given pressure) tending to reach a plateau, appearing at the proximal area of the aneurysm, whereas lower stresses were found at its distal part and even smaller at the aneurysm maximum diameter. Regarding the patient-specific aTAA model, the peak stresses appeared at the distal part of the aneurysm where a tear of the intima layer was detected during surgical intervention. Peak strains exhibited for each pressure a maximum at a certain aneurysm diameter beyond which they dropped so that essentially the vessel wall's distensibility was thus reduced. Examining more than 100 geometry cases and employing a failure stress criterion, the rupture diameter thresholds were estimated to be 65, 52.5, 50 and 47.5 mm for a pressure of 120, 160, 200 and 240 mmHg respectively.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"238-253"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanics of ascending aortic aneurysms based on a modulus of elasticity dependent on aneurysm diameter and pressure.\",\"authors\":\"Christos Manopoulos, Konstantinos Seferlis, Anastasios Raptis, Ilias Kouerinis, Dimitrios Mathioulakis\",\"doi\":\"10.1080/10255842.2023.2285722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mechanical stresses and strains are examined, in ascending thoracic aortic aneurysm (aTAA) models, in a patient-specific aTAA as well as in healthy thoracic aortic models, <i>via</i> Finite Element Analysis. The aneurysms are assumed spherical, 1.5 mm thick, with diameters between 47 mm and 80 mm, eccentrically positioned. The geometry and wall thickness distribution of the aorta along its length are based on open literature data for an average patient age of 66.25 years, accounting for the Body Surface Area (BSA) parameter. The vessel wall material is assumed isotropic and incompressible, with its Young's modulus varying with the aneurysm diameter and the applied intraluminal pressure (120 mmHg to 240 mmHg). In the aTAAs, peak stresses were found to increase nonlinearly with aneurysm diameter (for a given pressure) tending to reach a plateau, appearing at the proximal area of the aneurysm, whereas lower stresses were found at its distal part and even smaller at the aneurysm maximum diameter. Regarding the patient-specific aTAA model, the peak stresses appeared at the distal part of the aneurysm where a tear of the intima layer was detected during surgical intervention. Peak strains exhibited for each pressure a maximum at a certain aneurysm diameter beyond which they dropped so that essentially the vessel wall's distensibility was thus reduced. Examining more than 100 geometry cases and employing a failure stress criterion, the rupture diameter thresholds were estimated to be 65, 52.5, 50 and 47.5 mm for a pressure of 120, 160, 200 and 240 mmHg respectively.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"238-253\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2285722\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2285722","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

通过有限元分析,对升胸主动脉瘤(aTAA)模型、患者特异性aTAA模型以及健康胸主动脉瘤模型的机械应力和应变进行了检测。假设动脉瘤呈球形,厚1.5 mm,直径在47 - 80 mm之间,位置偏置。主动脉沿其长度的几何形状和壁厚分布基于开放文献数据,平均年龄为66.25岁,考虑体表面积(BSA)参数。假设血管壁材料各向同性且不可压缩,其杨氏模量随动脉瘤直径和施加的腔内压力(120 mmHg至240 mmHg)而变化。在aTAAs中,峰值应力随着动脉瘤直径的非线性增加(对于给定的压力)趋于平稳,出现在动脉瘤的近端区域,而在其远端发现较低的应力,并且在动脉瘤的最大直径处更小。对于患者特异性的aTAA模型,应力峰值出现在动脉瘤远端,在手术干预期间检测到内膜撕裂。在每个压力下,峰值应变在一定的动脉瘤直径处达到最大值,超过这个值,它们就会下降,因此基本上血管壁的膨胀性就会降低。研究了100多个几何案例,并采用了破坏应力准则,在120、160、200和240 mmHg的压力下,破裂直径阈值分别为65、52.5、50和47.5 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanics of ascending aortic aneurysms based on a modulus of elasticity dependent on aneurysm diameter and pressure.

The mechanical stresses and strains are examined, in ascending thoracic aortic aneurysm (aTAA) models, in a patient-specific aTAA as well as in healthy thoracic aortic models, via Finite Element Analysis. The aneurysms are assumed spherical, 1.5 mm thick, with diameters between 47 mm and 80 mm, eccentrically positioned. The geometry and wall thickness distribution of the aorta along its length are based on open literature data for an average patient age of 66.25 years, accounting for the Body Surface Area (BSA) parameter. The vessel wall material is assumed isotropic and incompressible, with its Young's modulus varying with the aneurysm diameter and the applied intraluminal pressure (120 mmHg to 240 mmHg). In the aTAAs, peak stresses were found to increase nonlinearly with aneurysm diameter (for a given pressure) tending to reach a plateau, appearing at the proximal area of the aneurysm, whereas lower stresses were found at its distal part and even smaller at the aneurysm maximum diameter. Regarding the patient-specific aTAA model, the peak stresses appeared at the distal part of the aneurysm where a tear of the intima layer was detected during surgical intervention. Peak strains exhibited for each pressure a maximum at a certain aneurysm diameter beyond which they dropped so that essentially the vessel wall's distensibility was thus reduced. Examining more than 100 geometry cases and employing a failure stress criterion, the rupture diameter thresholds were estimated to be 65, 52.5, 50 and 47.5 mm for a pressure of 120, 160, 200 and 240 mmHg respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信