Dhanasekaran S, Silambarasan D, Vivek Karthick P, Sudhakar K
{"title":"通过动态加权集合增强胰腺癌分类:一种博弈论方法。","authors":"Dhanasekaran S, Silambarasan D, Vivek Karthick P, Sudhakar K","doi":"10.1080/10255842.2023.2281277","DOIUrl":null,"url":null,"abstract":"<p><p>The significant research carried out on medical healthcare networks is giving computing innovations lots of space to produce the most recent innovations. Pancreatic cancer, which ranks among of the most common tumors that are thought to be fatal and unsuspected since it is positioned in the region of the abdomen beyond the stomach and can't be adequately treated once diagnosed. In radiological imaging, such as MRI and CT, computer-aided diagnosis (CAD), quantitative evaluations, and automated pancreatic cancer classification approaches are routinely provided. This study provides a dynamic weighted ensemble framework for pancreatic cancer classification inspired by game theory. Grey Level Co-occurrence Matrix (GLCM) is utilized for feature extraction, together with Gaussian kernel-based fuzzy rough sets theory (GKFRST) for feature reduction and the Random Forest (RF) classifier for categorization. The ResNet50 and VGG16 are used in the transfer learning (TL) paradigm. The combination of the outcomes from the TL paradigm and the RF classifier paradigm is suggested using an innovative ensemble classifier that relies on the game theory method. When compared with the current models, the ensemble technique considerably increases the pancreatic cancer classification accuracy and yields exceptional performance. The study improves the categorization of pancreatic cancer by using game theory, a mathematical paradigm that simulates strategic interactions. Because game theory has been not frequently used in the discipline of cancer categorization, this research is distinctive in its methodology.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"145-169"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing pancreatic cancer classification through dynamic weighted ensemble: a game theory approach.\",\"authors\":\"Dhanasekaran S, Silambarasan D, Vivek Karthick P, Sudhakar K\",\"doi\":\"10.1080/10255842.2023.2281277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The significant research carried out on medical healthcare networks is giving computing innovations lots of space to produce the most recent innovations. Pancreatic cancer, which ranks among of the most common tumors that are thought to be fatal and unsuspected since it is positioned in the region of the abdomen beyond the stomach and can't be adequately treated once diagnosed. In radiological imaging, such as MRI and CT, computer-aided diagnosis (CAD), quantitative evaluations, and automated pancreatic cancer classification approaches are routinely provided. This study provides a dynamic weighted ensemble framework for pancreatic cancer classification inspired by game theory. Grey Level Co-occurrence Matrix (GLCM) is utilized for feature extraction, together with Gaussian kernel-based fuzzy rough sets theory (GKFRST) for feature reduction and the Random Forest (RF) classifier for categorization. The ResNet50 and VGG16 are used in the transfer learning (TL) paradigm. The combination of the outcomes from the TL paradigm and the RF classifier paradigm is suggested using an innovative ensemble classifier that relies on the game theory method. When compared with the current models, the ensemble technique considerably increases the pancreatic cancer classification accuracy and yields exceptional performance. The study improves the categorization of pancreatic cancer by using game theory, a mathematical paradigm that simulates strategic interactions. Because game theory has been not frequently used in the discipline of cancer categorization, this research is distinctive in its methodology.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"145-169\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2023.2281277\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2023.2281277","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Enhancing pancreatic cancer classification through dynamic weighted ensemble: a game theory approach.
The significant research carried out on medical healthcare networks is giving computing innovations lots of space to produce the most recent innovations. Pancreatic cancer, which ranks among of the most common tumors that are thought to be fatal and unsuspected since it is positioned in the region of the abdomen beyond the stomach and can't be adequately treated once diagnosed. In radiological imaging, such as MRI and CT, computer-aided diagnosis (CAD), quantitative evaluations, and automated pancreatic cancer classification approaches are routinely provided. This study provides a dynamic weighted ensemble framework for pancreatic cancer classification inspired by game theory. Grey Level Co-occurrence Matrix (GLCM) is utilized for feature extraction, together with Gaussian kernel-based fuzzy rough sets theory (GKFRST) for feature reduction and the Random Forest (RF) classifier for categorization. The ResNet50 and VGG16 are used in the transfer learning (TL) paradigm. The combination of the outcomes from the TL paradigm and the RF classifier paradigm is suggested using an innovative ensemble classifier that relies on the game theory method. When compared with the current models, the ensemble technique considerably increases the pancreatic cancer classification accuracy and yields exceptional performance. The study improves the categorization of pancreatic cancer by using game theory, a mathematical paradigm that simulates strategic interactions. Because game theory has been not frequently used in the discipline of cancer categorization, this research is distinctive in its methodology.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.