Richard O.J.H. Stutt, Matthew D. Castle, Peter Markwell, Robert Baker, Christopher A. Gilligan
{"title":"玉米采前与采后黄曲霉毒素污染综合模型研究。","authors":"Richard O.J.H. Stutt, Matthew D. Castle, Peter Markwell, Robert Baker, Christopher A. Gilligan","doi":"10.1038/s41538-023-00238-7","DOIUrl":null,"url":null,"abstract":"Aflatoxin contamination caused by colonization of maize by Aspergillus flavus continues to pose a major human and livestock health hazard in the food chain. Increasing attention has been focused on the development of models to predict risk and to identify effective intervention strategies. Most risk prediction models have focused on elucidating weather and site variables on the pre-harvest dynamics of A. flavus growth and aflatoxin production. However fungal growth and toxin accumulation continue to occur after harvest, especially in countries where storage conditions are limited by logistical and cost constraints. In this paper, building on previous work, we introduce and test an integrated meteorology-driven epidemiological model that covers the entire supply chain from planting to delivery. We parameterise the model using approximate Bayesian computation with monthly time-series data over six years for contamination levels of aflatoxin in daily shipments received from up to three sourcing regions at a high-volume maize processing plant in South Central India. The time series for aflatoxin levels from the parameterised model successfully replicated the overall profile, scale and variance of the historical aflatoxin datasets used for fitting and validation. We use the model to illustrate the dynamics of A. flavus growth and aflatoxin production during the pre- and post-harvest phases in different sourcing regions, in short-term predictions to inform decision making about sourcing supplies and to compare intervention strategies to reduce the risks of aflatoxin contamination.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657429/pdf/","citationCount":"0","resultStr":"{\"title\":\"An integrated model for pre- and post-harvest aflatoxin contamination in maize\",\"authors\":\"Richard O.J.H. Stutt, Matthew D. Castle, Peter Markwell, Robert Baker, Christopher A. Gilligan\",\"doi\":\"10.1038/s41538-023-00238-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aflatoxin contamination caused by colonization of maize by Aspergillus flavus continues to pose a major human and livestock health hazard in the food chain. Increasing attention has been focused on the development of models to predict risk and to identify effective intervention strategies. Most risk prediction models have focused on elucidating weather and site variables on the pre-harvest dynamics of A. flavus growth and aflatoxin production. However fungal growth and toxin accumulation continue to occur after harvest, especially in countries where storage conditions are limited by logistical and cost constraints. In this paper, building on previous work, we introduce and test an integrated meteorology-driven epidemiological model that covers the entire supply chain from planting to delivery. We parameterise the model using approximate Bayesian computation with monthly time-series data over six years for contamination levels of aflatoxin in daily shipments received from up to three sourcing regions at a high-volume maize processing plant in South Central India. The time series for aflatoxin levels from the parameterised model successfully replicated the overall profile, scale and variance of the historical aflatoxin datasets used for fitting and validation. We use the model to illustrate the dynamics of A. flavus growth and aflatoxin production during the pre- and post-harvest phases in different sourcing regions, in short-term predictions to inform decision making about sourcing supplies and to compare intervention strategies to reduce the risks of aflatoxin contamination.\",\"PeriodicalId\":19367,\"journal\":{\"name\":\"NPJ Science of Food\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657429/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Science of Food\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.nature.com/articles/s41538-023-00238-7\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Science of Food","FirstCategoryId":"97","ListUrlMain":"https://www.nature.com/articles/s41538-023-00238-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
An integrated model for pre- and post-harvest aflatoxin contamination in maize
Aflatoxin contamination caused by colonization of maize by Aspergillus flavus continues to pose a major human and livestock health hazard in the food chain. Increasing attention has been focused on the development of models to predict risk and to identify effective intervention strategies. Most risk prediction models have focused on elucidating weather and site variables on the pre-harvest dynamics of A. flavus growth and aflatoxin production. However fungal growth and toxin accumulation continue to occur after harvest, especially in countries where storage conditions are limited by logistical and cost constraints. In this paper, building on previous work, we introduce and test an integrated meteorology-driven epidemiological model that covers the entire supply chain from planting to delivery. We parameterise the model using approximate Bayesian computation with monthly time-series data over six years for contamination levels of aflatoxin in daily shipments received from up to three sourcing regions at a high-volume maize processing plant in South Central India. The time series for aflatoxin levels from the parameterised model successfully replicated the overall profile, scale and variance of the historical aflatoxin datasets used for fitting and validation. We use the model to illustrate the dynamics of A. flavus growth and aflatoxin production during the pre- and post-harvest phases in different sourcing regions, in short-term predictions to inform decision making about sourcing supplies and to compare intervention strategies to reduce the risks of aflatoxin contamination.
期刊介绍:
npj Science of Food is an online-only and open access journal publishes high-quality, high-impact papers related to food safety, security, integrated production, processing and packaging, the changes and interactions of food components, and the influence on health and wellness properties of food. The journal will support fundamental studies that advance the science of food beyond the classic focus on processing, thereby addressing basic inquiries around food from the public and industry. It will also support research that might result in innovation of technologies and products that are public-friendly while promoting the United Nations sustainable development goals.