广义扩展Mittag-Leffler函数及其关于积分变换和分数阶微积分的性质

IF 1.1 Q2 EDUCATION & EDUCATIONAL RESEARCH
A. Padma, M. Ganeshwara Rao, Biniyam Shimelis
{"title":"广义扩展Mittag-Leffler函数及其关于积分变换和分数阶微积分的性质","authors":"A. Padma, M. Ganeshwara Rao, Biniyam Shimelis","doi":"10.1080/27684830.2023.2220205","DOIUrl":null,"url":null,"abstract":"We aim to introduce extended generalized Mittag-Leffler function (EGMLF) via the extended Beta function and obtain certain integral and differential representation of them. Further, we present some formulas of the Riemann-–Liouville fractional integration and differentiation operators. Also, we derive various integral transforms, including Euler transform, Laplace transform, Whittakar transform and K-transform. The operator and transform images are expressed in terms of the Wright generalized hypergoemetrichypergeometric type function. Interesting special cases of the main results are also considered.","PeriodicalId":45396,"journal":{"name":"Research in Mathematics Education","volume":"31 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalized extended Mittag-Leffler function and its properties pertaining to integral transforms and fractional calculus\",\"authors\":\"A. Padma, M. Ganeshwara Rao, Biniyam Shimelis\",\"doi\":\"10.1080/27684830.2023.2220205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aim to introduce extended generalized Mittag-Leffler function (EGMLF) via the extended Beta function and obtain certain integral and differential representation of them. Further, we present some formulas of the Riemann-–Liouville fractional integration and differentiation operators. Also, we derive various integral transforms, including Euler transform, Laplace transform, Whittakar transform and K-transform. The operator and transform images are expressed in terms of the Wright generalized hypergoemetrichypergeometric type function. Interesting special cases of the main results are also considered.\",\"PeriodicalId\":45396,\"journal\":{\"name\":\"Research in Mathematics Education\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Mathematics Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/27684830.2023.2220205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Mathematics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/27684830.2023.2220205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 1

摘要

本文旨在通过扩展Beta函数引入扩展广义Mittag-Leffler函数(EGMLF),并得到其一定的积分和微分表示形式。进一步,我们给出了Riemann—Liouville分数阶积分和微分算子的一些公式。此外,我们还推导了各种积分变换,包括欧拉变换、拉普拉斯变换、惠特卡变换和k变换。算子和变换图像用Wright广义超几何-超几何型函数表示。还考虑了主要结果的有趣的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized extended Mittag-Leffler function and its properties pertaining to integral transforms and fractional calculus
We aim to introduce extended generalized Mittag-Leffler function (EGMLF) via the extended Beta function and obtain certain integral and differential representation of them. Further, we present some formulas of the Riemann-–Liouville fractional integration and differentiation operators. Also, we derive various integral transforms, including Euler transform, Laplace transform, Whittakar transform and K-transform. The operator and transform images are expressed in terms of the Wright generalized hypergoemetrichypergeometric type function. Interesting special cases of the main results are also considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in Mathematics Education
Research in Mathematics Education EDUCATION & EDUCATIONAL RESEARCH-
CiteScore
3.00
自引率
15.40%
发文量
40
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信