{"title":"毛毛Merremia mammosa (Lour) Hall中生物活性化合物的活性。f.)作为SARS-CoV2进入阶段的抑制剂:计算机研究","authors":"Neny Purwitasari, Mangestuti Agil, Siswandono Siswodihardjo, Saipul Maulana, Muhammad Sulaiman Zubair","doi":"10.46542/pe.2023.234.340343","DOIUrl":null,"url":null,"abstract":"Background: Covid 19 is a global pandemic caused by SARS-CoV2, a novel coronavirus. This virus enters target organ epithelial cells by utilising two host proteins; Transmembrane Serine Protease 2 (TMPRSS2) and Angiotensin Converting Enzyme 2 (ACE2). The inhibition of TMPRSS2 has shown to be a promising means to prevent viral infection. Molecular docking, and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) analysis will determine the activity of Merremia mammosa (Lour) Hall.f. secondary metabolites against the TMPRSS2 of SARS-CoV2. Objective: This study aimed to investigate the in silico activity of Merremia mammosa (Lour) Hall.f. active compounds against TMPRSS2 of SARS-CoV2. Method: Molecular docking was performed on 206 compounds obtained through metabolite profiling from a previous study on the SARS-CoV TMPRSS-2 protein (PDB id.7MEQ) using the Maestro Schrodinger software. Result: The results indicated there were 6 compounds (three of which were flavonoids: cynarine, phellodensin F, and gemixanthone A) with docking scores lower than standard drugs (nafamostat as a native ligand). ADMET analysis revealed that among 6 compounds, cynarine has the highest drug-likeness and the greatest inhibitory potential against TMPRSS2. Conclusion: Cynarine was found to be active and promising to be developed as an inhibitor of the SARS-CoV2 entry step.","PeriodicalId":19944,"journal":{"name":"Pharmacy Education","volume":"83 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The activity of bioactive compounds from bidara upas (Merremia mammosa (Lour) Hall. f.) as an inhibitor of SARS-CoV2 entry stage: In silico study\",\"authors\":\"Neny Purwitasari, Mangestuti Agil, Siswandono Siswodihardjo, Saipul Maulana, Muhammad Sulaiman Zubair\",\"doi\":\"10.46542/pe.2023.234.340343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Covid 19 is a global pandemic caused by SARS-CoV2, a novel coronavirus. This virus enters target organ epithelial cells by utilising two host proteins; Transmembrane Serine Protease 2 (TMPRSS2) and Angiotensin Converting Enzyme 2 (ACE2). The inhibition of TMPRSS2 has shown to be a promising means to prevent viral infection. Molecular docking, and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) analysis will determine the activity of Merremia mammosa (Lour) Hall.f. secondary metabolites against the TMPRSS2 of SARS-CoV2. Objective: This study aimed to investigate the in silico activity of Merremia mammosa (Lour) Hall.f. active compounds against TMPRSS2 of SARS-CoV2. Method: Molecular docking was performed on 206 compounds obtained through metabolite profiling from a previous study on the SARS-CoV TMPRSS-2 protein (PDB id.7MEQ) using the Maestro Schrodinger software. Result: The results indicated there were 6 compounds (three of which were flavonoids: cynarine, phellodensin F, and gemixanthone A) with docking scores lower than standard drugs (nafamostat as a native ligand). ADMET analysis revealed that among 6 compounds, cynarine has the highest drug-likeness and the greatest inhibitory potential against TMPRSS2. Conclusion: Cynarine was found to be active and promising to be developed as an inhibitor of the SARS-CoV2 entry step.\",\"PeriodicalId\":19944,\"journal\":{\"name\":\"Pharmacy Education\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacy Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46542/pe.2023.234.340343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacy Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46542/pe.2023.234.340343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
The activity of bioactive compounds from bidara upas (Merremia mammosa (Lour) Hall. f.) as an inhibitor of SARS-CoV2 entry stage: In silico study
Background: Covid 19 is a global pandemic caused by SARS-CoV2, a novel coronavirus. This virus enters target organ epithelial cells by utilising two host proteins; Transmembrane Serine Protease 2 (TMPRSS2) and Angiotensin Converting Enzyme 2 (ACE2). The inhibition of TMPRSS2 has shown to be a promising means to prevent viral infection. Molecular docking, and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) analysis will determine the activity of Merremia mammosa (Lour) Hall.f. secondary metabolites against the TMPRSS2 of SARS-CoV2. Objective: This study aimed to investigate the in silico activity of Merremia mammosa (Lour) Hall.f. active compounds against TMPRSS2 of SARS-CoV2. Method: Molecular docking was performed on 206 compounds obtained through metabolite profiling from a previous study on the SARS-CoV TMPRSS-2 protein (PDB id.7MEQ) using the Maestro Schrodinger software. Result: The results indicated there were 6 compounds (three of which were flavonoids: cynarine, phellodensin F, and gemixanthone A) with docking scores lower than standard drugs (nafamostat as a native ligand). ADMET analysis revealed that among 6 compounds, cynarine has the highest drug-likeness and the greatest inhibitory potential against TMPRSS2. Conclusion: Cynarine was found to be active and promising to be developed as an inhibitor of the SARS-CoV2 entry step.
期刊介绍:
Pharmacy Education journal provides a research, development and evaluation forum for communication between academic teachers, researchers and practitioners in professional and pharmacy education, with an emphasis on new and established teaching and learning methods, new curriculum and syllabus directions, educational outcomes, guidance on structuring courses and assessing achievement, and workforce development. It is a peer-reviewed online open access platform for the dissemination of new ideas in professional pharmacy education and workforce development. Pharmacy Education supports Open Access (OA): free, unrestricted online access to research outputs. Readers are able to access the Journal and individual published articles for free - there are no subscription fees or ''pay per view'' charges. Authors wishing to publish their work in Pharmacy Education do so without incurring any financial costs.