{"title":"通过重复伯努利试验改进大型模型中的Hosmer-Lemeshow拟合优度检验","authors":"Nikola Surjanovic, Thomas M. Loughin","doi":"10.1080/02664763.2023.2272223","DOIUrl":null,"url":null,"abstract":"The Hosmer-Lemeshow (HL) test is a commonly used global goodness-of-fit (GOF) test that assesses the quality of the overall fit of a logistic regression model. In this paper, we give results from simulations showing that the type I error rate (and hence power) of the HL test decreases as model complexity grows, provided that the sample size remains fixed and binary replicates (multiple Bernoulli trials) are present in the data. We demonstrate that a generalized version of the HL test (GHL) presented in previous work can offer some protection against this power loss. These results are also supported by application of both the HL and GHL test to a real-life data set. We conclude with a brief discussion explaining the behavior of the HL test, along with some guidance on how to choose between the two tests. In particular, we suggest the GHL test to be used when there are binary replicates or clusters in the covariate space, provided that the sample size is sufficiently large.","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"43 4","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Hosmer-Lemeshow goodness-of-fit test in large models with replicated Bernoulli trials\",\"authors\":\"Nikola Surjanovic, Thomas M. Loughin\",\"doi\":\"10.1080/02664763.2023.2272223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Hosmer-Lemeshow (HL) test is a commonly used global goodness-of-fit (GOF) test that assesses the quality of the overall fit of a logistic regression model. In this paper, we give results from simulations showing that the type I error rate (and hence power) of the HL test decreases as model complexity grows, provided that the sample size remains fixed and binary replicates (multiple Bernoulli trials) are present in the data. We demonstrate that a generalized version of the HL test (GHL) presented in previous work can offer some protection against this power loss. These results are also supported by application of both the HL and GHL test to a real-life data set. We conclude with a brief discussion explaining the behavior of the HL test, along with some guidance on how to choose between the two tests. In particular, we suggest the GHL test to be used when there are binary replicates or clusters in the covariate space, provided that the sample size is sufficiently large.\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"43 4\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2023.2272223\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02664763.2023.2272223","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Improving the Hosmer-Lemeshow goodness-of-fit test in large models with replicated Bernoulli trials
The Hosmer-Lemeshow (HL) test is a commonly used global goodness-of-fit (GOF) test that assesses the quality of the overall fit of a logistic regression model. In this paper, we give results from simulations showing that the type I error rate (and hence power) of the HL test decreases as model complexity grows, provided that the sample size remains fixed and binary replicates (multiple Bernoulli trials) are present in the data. We demonstrate that a generalized version of the HL test (GHL) presented in previous work can offer some protection against this power loss. These results are also supported by application of both the HL and GHL test to a real-life data set. We conclude with a brief discussion explaining the behavior of the HL test, along with some guidance on how to choose between the two tests. In particular, we suggest the GHL test to be used when there are binary replicates or clusters in the covariate space, provided that the sample size is sufficiently large.
期刊介绍:
Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.