针板电极直流负电晕放电时活性氮氧化物(RONS)生成特性的微观分析

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL
Jinqiang Shi, Fubao Jin, Shangang Ma, Xinhe Liu, Xuejian Leng, Keyuan Chen
{"title":"针板电极直流负电晕放电时活性氮氧化物(RONS)生成特性的微观分析","authors":"Jinqiang Shi, Fubao Jin, Shangang Ma, Xinhe Liu, Xuejian Leng, Keyuan Chen","doi":"10.3390/plasma6040045","DOIUrl":null,"url":null,"abstract":"The DC negative corona of needle-plate electrodes can generate atmospheric pressure low-temperature plasma active particles, which have important effects on biological mutagenesis. The DC negative corona discharge of an air needle-plate electrode with effective consideration of NOx particles was simulated and the Trichel pulse current was obtained, focusing on the development of particles and the distribution of active nitrogen oxides (RONS) at four moments in the pulse process. The simulation results indicate that the positive ions (N2+ and O2+) and negative ions (O− and O2−) were closely related to the current changes, and the negative ions (O− and O2−) presented a typical stratification phenomenon. RONS (H2O2, O3, and NO) were approximately uniformly distributed above the level of the plate electrode at the same instant, with H2O2 and O3 except for the area below the needle tip. They trended to a cumulative increase in concentration with time. This study provides a theoretical basis for corona discharge plasma seed treatment technology.","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microanalysis of Active Nitrogen Oxides (RONS) Generation Characteristics during DC Negative Corona Discharge at a Needle-Plate Electrode\",\"authors\":\"Jinqiang Shi, Fubao Jin, Shangang Ma, Xinhe Liu, Xuejian Leng, Keyuan Chen\",\"doi\":\"10.3390/plasma6040045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The DC negative corona of needle-plate electrodes can generate atmospheric pressure low-temperature plasma active particles, which have important effects on biological mutagenesis. The DC negative corona discharge of an air needle-plate electrode with effective consideration of NOx particles was simulated and the Trichel pulse current was obtained, focusing on the development of particles and the distribution of active nitrogen oxides (RONS) at four moments in the pulse process. The simulation results indicate that the positive ions (N2+ and O2+) and negative ions (O− and O2−) were closely related to the current changes, and the negative ions (O− and O2−) presented a typical stratification phenomenon. RONS (H2O2, O3, and NO) were approximately uniformly distributed above the level of the plate electrode at the same instant, with H2O2 and O3 except for the area below the needle tip. They trended to a cumulative increase in concentration with time. This study provides a theoretical basis for corona discharge plasma seed treatment technology.\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/plasma6040045\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/plasma6040045","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

针板电极的直流负电晕可产生常压低温等离子体活性粒子,在生物诱变中具有重要作用。模拟了有效考虑NOx粒子的空气针板电极直流负电晕放电,得到了Trichel脉冲电流,重点研究了脉冲过程中粒子的发展和活性氮氧化物(RONS)在四个时刻的分布。模拟结果表明,正离子(N2+和O2+)和负离子(O−和O2−)与电流变化密切相关,负离子(O−和O2−)呈现典型的分层现象。在同一时刻,除了针尖以下的区域外,H2O2、O3和NO在平板电极水平上方大致均匀分布。随着时间的推移,它们的浓度有累积增加的趋势。本研究为电晕放电等离子体种子处理技术提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microanalysis of Active Nitrogen Oxides (RONS) Generation Characteristics during DC Negative Corona Discharge at a Needle-Plate Electrode
The DC negative corona of needle-plate electrodes can generate atmospheric pressure low-temperature plasma active particles, which have important effects on biological mutagenesis. The DC negative corona discharge of an air needle-plate electrode with effective consideration of NOx particles was simulated and the Trichel pulse current was obtained, focusing on the development of particles and the distribution of active nitrogen oxides (RONS) at four moments in the pulse process. The simulation results indicate that the positive ions (N2+ and O2+) and negative ions (O− and O2−) were closely related to the current changes, and the negative ions (O− and O2−) presented a typical stratification phenomenon. RONS (H2O2, O3, and NO) were approximately uniformly distributed above the level of the plate electrode at the same instant, with H2O2 and O3 except for the area below the needle tip. They trended to a cumulative increase in concentration with time. This study provides a theoretical basis for corona discharge plasma seed treatment technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信