调频测距机载雷达杂波抑制

IF 1.6 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ji Hwan Yoon, Yong Min Kim
{"title":"调频测距机载雷达杂波抑制","authors":"Ji Hwan Yoon, Yong Min Kim","doi":"10.26866/jees.2023.6.r.190","DOIUrl":null,"url":null,"abstract":"In airborne radar, it is important to reject clutter signals to detect targets of interest. High pulse repetition frequency (HPRF) waveform provides robust detection performance in a clutter environment by separating clutter signals from the target echo signals in a Doppler frequency domain, but it suffers from range ambiguity. The range ambiguity in HPRF can be resolved by frequency modulation (FM) ranging. However, the Doppler frequencies of both the clutter and target echo signals change linearly with the range due to changes in the carrier frequency in FM ranging. In such a case, the target echo signal can be rejected by a conventional clutter rejection frequency even if it is not masked by a clutter signal. This paper proposes an optimum clutter rejection frequency for FM ranging airborne radar by considering the Doppler frequency spread in FM ranging. The optimum clutter rejection frequency is derived by calculating the maximum Doppler frequency of the spread clutter signal caused by FM ranging. The simulation and flight test results verify that the proposed clutter rejection frequency is the optimum value that can improve the detection capability of FM ranging airborne radar.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clutter Rejection for FM Ranging Airborne Radar\",\"authors\":\"Ji Hwan Yoon, Yong Min Kim\",\"doi\":\"10.26866/jees.2023.6.r.190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In airborne radar, it is important to reject clutter signals to detect targets of interest. High pulse repetition frequency (HPRF) waveform provides robust detection performance in a clutter environment by separating clutter signals from the target echo signals in a Doppler frequency domain, but it suffers from range ambiguity. The range ambiguity in HPRF can be resolved by frequency modulation (FM) ranging. However, the Doppler frequencies of both the clutter and target echo signals change linearly with the range due to changes in the carrier frequency in FM ranging. In such a case, the target echo signal can be rejected by a conventional clutter rejection frequency even if it is not masked by a clutter signal. This paper proposes an optimum clutter rejection frequency for FM ranging airborne radar by considering the Doppler frequency spread in FM ranging. The optimum clutter rejection frequency is derived by calculating the maximum Doppler frequency of the spread clutter signal caused by FM ranging. The simulation and flight test results verify that the proposed clutter rejection frequency is the optimum value that can improve the detection capability of FM ranging airborne radar.\",\"PeriodicalId\":15662,\"journal\":{\"name\":\"Journal of electromagnetic engineering and science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of electromagnetic engineering and science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26866/jees.2023.6.r.190\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26866/jees.2023.6.r.190","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clutter Rejection for FM Ranging Airborne Radar
In airborne radar, it is important to reject clutter signals to detect targets of interest. High pulse repetition frequency (HPRF) waveform provides robust detection performance in a clutter environment by separating clutter signals from the target echo signals in a Doppler frequency domain, but it suffers from range ambiguity. The range ambiguity in HPRF can be resolved by frequency modulation (FM) ranging. However, the Doppler frequencies of both the clutter and target echo signals change linearly with the range due to changes in the carrier frequency in FM ranging. In such a case, the target echo signal can be rejected by a conventional clutter rejection frequency even if it is not masked by a clutter signal. This paper proposes an optimum clutter rejection frequency for FM ranging airborne radar by considering the Doppler frequency spread in FM ranging. The optimum clutter rejection frequency is derived by calculating the maximum Doppler frequency of the spread clutter signal caused by FM ranging. The simulation and flight test results verify that the proposed clutter rejection frequency is the optimum value that can improve the detection capability of FM ranging airborne radar.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of electromagnetic engineering and science
Journal of electromagnetic engineering and science ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.90
自引率
17.40%
发文量
82
审稿时长
10 weeks
期刊介绍: The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信