{"title":"交通流事故的平滑回归及影响措施","authors":"Zhou Yu, Jie Yang, Hsin-Hsiung Huang","doi":"10.1080/02664763.2023.2175799","DOIUrl":null,"url":null,"abstract":"Traffic pattern identification and accident evaluation are essential for improving traffic planning, road safety, and traffic management. In this paper, we establish classification and regression models to characterize the relationship between traffic flows and different time points and identify different patterns of traffic flows by a negative binomial model with smoothing splines. It provides mean response curves and Bayesian credible bands for traffic flows, a single index, and the log-likelihood difference, for traffic flow pattern recognition. We further propose an impact measure for evaluating the influence of accidents on traffic flows based on the fitted negative binomial model. The proposed method has been successfully applied to real-world traffic flows, and it can be used for improving traffic management.","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"299 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smoothing regression and impact measures for accidents of traffic flows\",\"authors\":\"Zhou Yu, Jie Yang, Hsin-Hsiung Huang\",\"doi\":\"10.1080/02664763.2023.2175799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic pattern identification and accident evaluation are essential for improving traffic planning, road safety, and traffic management. In this paper, we establish classification and regression models to characterize the relationship between traffic flows and different time points and identify different patterns of traffic flows by a negative binomial model with smoothing splines. It provides mean response curves and Bayesian credible bands for traffic flows, a single index, and the log-likelihood difference, for traffic flow pattern recognition. We further propose an impact measure for evaluating the influence of accidents on traffic flows based on the fitted negative binomial model. The proposed method has been successfully applied to real-world traffic flows, and it can be used for improving traffic management.\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"299 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2023.2175799\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02664763.2023.2175799","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Smoothing regression and impact measures for accidents of traffic flows
Traffic pattern identification and accident evaluation are essential for improving traffic planning, road safety, and traffic management. In this paper, we establish classification and regression models to characterize the relationship between traffic flows and different time points and identify different patterns of traffic flows by a negative binomial model with smoothing splines. It provides mean response curves and Bayesian credible bands for traffic flows, a single index, and the log-likelihood difference, for traffic flow pattern recognition. We further propose an impact measure for evaluating the influence of accidents on traffic flows based on the fitted negative binomial model. The proposed method has been successfully applied to real-world traffic flows, and it can be used for improving traffic management.
期刊介绍:
Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.