Yousef Ahmed Alkhamis, Airin Sultana, Shaikh Tareq Arafat, Muhammad Abdur Rouf, Sheikh Mustafizur Rahman, Roshmon Thomas Mathew, Nagarajan Ganesan, Afrin Sultana, Rashid Saleh Alngada, Raed Abdul Whed, Nouh Abdulaziz Aljaafari, Md. Moshiur Rahman
{"title":"生物絮团技术对水产养殖水质的影响:系统荟萃分析","authors":"Yousef Ahmed Alkhamis, Airin Sultana, Shaikh Tareq Arafat, Muhammad Abdur Rouf, Sheikh Mustafizur Rahman, Roshmon Thomas Mathew, Nagarajan Ganesan, Afrin Sultana, Rashid Saleh Alngada, Raed Abdul Whed, Nouh Abdulaziz Aljaafari, Md. Moshiur Rahman","doi":"10.1155/2023/9915874","DOIUrl":null,"url":null,"abstract":"A technique called biofloc technology (BFT) is an environmentally friendly method for aquaculture in which a successful growing cycle depends on the maintenance and monitoring of water quality parameters. Studies have revealed that improving water quality in BFT and maintaining the safety range of the parameters can help to increase the growth performance of cultured species. Following a systematic review of the literature, a meta-analysis was performed to explore how some important water parameters such as pH, dissolved oxygen (DO), nitrite (NO2–N), nitrate (NO3–N), ammonia (NH3–N), total ammonia nitrogen (TAN), total suspended solids (TSS), and alkalinity were influenced by different BFT systems. The PRISMA screening process was followed, and 33 studies were eligible for the meta-analysis. The meta-analyses showed that NO2–N and TSS were significantly affected by BFT, while pH, DO, NO3–N, NH3–N, TAN, and alkalinity were not significantly influenced by this system. The analyses revealed that NO2–N had a significant negative effect size due to BFT, whereas TSS showed a significant positive effect size. The study also revealed some publication bias in which few experiments of some studies showed extremely positive and negative effect sizes due to BFT application in the system. Overall, the findings suggest clear evidence of the profound influence of BFT on the water quality parameters in different aquaculture systems, suggesting the future development of BFT for sustainable and environmentally friendly aquaculture production.","PeriodicalId":8225,"journal":{"name":"Aquaculture Nutrition","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Biofloc Technology on Water Quality in Aquaculture: A Systematic Meta-Analysis\",\"authors\":\"Yousef Ahmed Alkhamis, Airin Sultana, Shaikh Tareq Arafat, Muhammad Abdur Rouf, Sheikh Mustafizur Rahman, Roshmon Thomas Mathew, Nagarajan Ganesan, Afrin Sultana, Rashid Saleh Alngada, Raed Abdul Whed, Nouh Abdulaziz Aljaafari, Md. Moshiur Rahman\",\"doi\":\"10.1155/2023/9915874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A technique called biofloc technology (BFT) is an environmentally friendly method for aquaculture in which a successful growing cycle depends on the maintenance and monitoring of water quality parameters. Studies have revealed that improving water quality in BFT and maintaining the safety range of the parameters can help to increase the growth performance of cultured species. Following a systematic review of the literature, a meta-analysis was performed to explore how some important water parameters such as pH, dissolved oxygen (DO), nitrite (NO2–N), nitrate (NO3–N), ammonia (NH3–N), total ammonia nitrogen (TAN), total suspended solids (TSS), and alkalinity were influenced by different BFT systems. The PRISMA screening process was followed, and 33 studies were eligible for the meta-analysis. The meta-analyses showed that NO2–N and TSS were significantly affected by BFT, while pH, DO, NO3–N, NH3–N, TAN, and alkalinity were not significantly influenced by this system. The analyses revealed that NO2–N had a significant negative effect size due to BFT, whereas TSS showed a significant positive effect size. The study also revealed some publication bias in which few experiments of some studies showed extremely positive and negative effect sizes due to BFT application in the system. Overall, the findings suggest clear evidence of the profound influence of BFT on the water quality parameters in different aquaculture systems, suggesting the future development of BFT for sustainable and environmentally friendly aquaculture production.\",\"PeriodicalId\":8225,\"journal\":{\"name\":\"Aquaculture Nutrition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Nutrition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/9915874\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Nutrition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/9915874","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
The Impact of Biofloc Technology on Water Quality in Aquaculture: A Systematic Meta-Analysis
A technique called biofloc technology (BFT) is an environmentally friendly method for aquaculture in which a successful growing cycle depends on the maintenance and monitoring of water quality parameters. Studies have revealed that improving water quality in BFT and maintaining the safety range of the parameters can help to increase the growth performance of cultured species. Following a systematic review of the literature, a meta-analysis was performed to explore how some important water parameters such as pH, dissolved oxygen (DO), nitrite (NO2–N), nitrate (NO3–N), ammonia (NH3–N), total ammonia nitrogen (TAN), total suspended solids (TSS), and alkalinity were influenced by different BFT systems. The PRISMA screening process was followed, and 33 studies were eligible for the meta-analysis. The meta-analyses showed that NO2–N and TSS were significantly affected by BFT, while pH, DO, NO3–N, NH3–N, TAN, and alkalinity were not significantly influenced by this system. The analyses revealed that NO2–N had a significant negative effect size due to BFT, whereas TSS showed a significant positive effect size. The study also revealed some publication bias in which few experiments of some studies showed extremely positive and negative effect sizes due to BFT application in the system. Overall, the findings suggest clear evidence of the profound influence of BFT on the water quality parameters in different aquaculture systems, suggesting the future development of BFT for sustainable and environmentally friendly aquaculture production.
期刊介绍:
Aquaculture Nutrition is published on a bimonthly basis, providing a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology. The Journal specifically seeks to improve our understanding of the nutrition of aquacultured species through the provision of an international forum for the presentation of reviews and original research papers.
Aquaculture Nutrition publishes papers which strive to:
increase basic knowledge of the nutrition of aquacultured species and elevate the standards of published aquaculture nutrition research.
improve understanding of the relationships between nutrition and the environmental impact of aquaculture.
increase understanding of the relationships between nutrition and processing, product quality, and the consumer.
help aquaculturalists improve their management and understanding of the complex discipline of nutrition.
help the aquaculture feed industry by providing a focus for relevant information, techniques, tools and concepts.