{"title":"鞍点近似估计非正态随机线性混合效应模型及其在零售价格分析中的应用","authors":"Hao Chen, Lanshan Han, Alvin Lim","doi":"10.1080/02664763.2023.2260576","DOIUrl":null,"url":null,"abstract":"ABSTRACTLinear Mixed Effects (LME) models are powerful statistical tools that have been employed in many different real-world applications such as retail data analytics, marketing measurement, and medical research. Statistical inference is often conducted via maximum likelihood estimation with Normality assumptions on the random effects. Nevertheless, for many applications in the retail industry, it is often necessary to consider non-Normal distributions on the random effects when considering the unknown parameters' business interpretations. Motivated by this need, a linear mixed effects model with possibly non-Normal distribution is studied in this research. We propose a general estimating framework based on a saddlepoint approximation (SA) of the probability density function of the dependent variable, which leads to constrained nonlinear optimization problems. The classical LME model with Normality assumption can then be viewed as a special case under the proposed general SA framework. Compared with the existing approach, the proposed method enhances the real-world interpretability of the estimates with satisfactory model fits.KEYWORDS: Mixed effects modellinear regressionconstrained optimizationstatistical inferencesaddlepoint approximationMATHEMATICAL SUBJECT CLASSIFICATION: 62J05 Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"10 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating linear mixed effect models with non-normal random effects through saddlepoint approximation and its application in retail pricing analytics\",\"authors\":\"Hao Chen, Lanshan Han, Alvin Lim\",\"doi\":\"10.1080/02664763.2023.2260576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTLinear Mixed Effects (LME) models are powerful statistical tools that have been employed in many different real-world applications such as retail data analytics, marketing measurement, and medical research. Statistical inference is often conducted via maximum likelihood estimation with Normality assumptions on the random effects. Nevertheless, for many applications in the retail industry, it is often necessary to consider non-Normal distributions on the random effects when considering the unknown parameters' business interpretations. Motivated by this need, a linear mixed effects model with possibly non-Normal distribution is studied in this research. We propose a general estimating framework based on a saddlepoint approximation (SA) of the probability density function of the dependent variable, which leads to constrained nonlinear optimization problems. The classical LME model with Normality assumption can then be viewed as a special case under the proposed general SA framework. Compared with the existing approach, the proposed method enhances the real-world interpretability of the estimates with satisfactory model fits.KEYWORDS: Mixed effects modellinear regressionconstrained optimizationstatistical inferencesaddlepoint approximationMATHEMATICAL SUBJECT CLASSIFICATION: 62J05 Disclosure statementNo potential conflict of interest was reported by the author(s).\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2023.2260576\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02664763.2023.2260576","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Estimating linear mixed effect models with non-normal random effects through saddlepoint approximation and its application in retail pricing analytics
ABSTRACTLinear Mixed Effects (LME) models are powerful statistical tools that have been employed in many different real-world applications such as retail data analytics, marketing measurement, and medical research. Statistical inference is often conducted via maximum likelihood estimation with Normality assumptions on the random effects. Nevertheless, for many applications in the retail industry, it is often necessary to consider non-Normal distributions on the random effects when considering the unknown parameters' business interpretations. Motivated by this need, a linear mixed effects model with possibly non-Normal distribution is studied in this research. We propose a general estimating framework based on a saddlepoint approximation (SA) of the probability density function of the dependent variable, which leads to constrained nonlinear optimization problems. The classical LME model with Normality assumption can then be viewed as a special case under the proposed general SA framework. Compared with the existing approach, the proposed method enhances the real-world interpretability of the estimates with satisfactory model fits.KEYWORDS: Mixed effects modellinear regressionconstrained optimizationstatistical inferencesaddlepoint approximationMATHEMATICAL SUBJECT CLASSIFICATION: 62J05 Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.