通过自适应广告排序优化用户粘性

IF 4 2区 管理学 Q2 BUSINESS
Omid Rafieian
{"title":"通过自适应广告排序优化用户粘性","authors":"Omid Rafieian","doi":"10.1287/mksc.2022.1423","DOIUrl":null,"url":null,"abstract":"This paper develops an offline reinforcement learning framework that identifies and evaluate the ad sequencing policy that optimizes user engagement.","PeriodicalId":48382,"journal":{"name":"Marketing Science","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing User Engagement Through Adaptive Ad Sequencing\",\"authors\":\"Omid Rafieian\",\"doi\":\"10.1287/mksc.2022.1423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops an offline reinforcement learning framework that identifies and evaluate the ad sequencing policy that optimizes user engagement.\",\"PeriodicalId\":48382,\"journal\":{\"name\":\"Marketing Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marketing Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/mksc.2022.1423\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marketing Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/mksc.2022.1423","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

摘要

本文开发了一个离线强化学习框架,用于识别和评估优化用户参与度的广告排序策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing User Engagement Through Adaptive Ad Sequencing
This paper develops an offline reinforcement learning framework that identifies and evaluate the ad sequencing policy that optimizes user engagement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marketing Science
Marketing Science BUSINESS-
CiteScore
8.60
自引率
10.00%
发文量
94
期刊介绍: Marketing Science is a publication of the Institute for Operations Research and the Management Sciences (INFORMS) publication (SSCI indexed). We invite authors to submit for peer review their best marketing-oriented research. We accept many types of manuscripts. Please consider us as an author-friendly outlet for your research. We are THE premier journal focusing on empirical and theoretical quantitative research in marketing. Marketing Science promises to provide constructive, fair, and timely reviews with the goal of identifying the best submissions for publication. Topics covered in Marketing Science include the following: -Advertising- Buyer Behavior- Channels- Competitive Strategy- Forecasting- Marketing Research- New Product Development- Pricing and Promotions- Sales Force Management- Segmentation- Services Marketing- Targetability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信