{"title":"多属性决策的犹豫fermatan模糊Bonferroni均值算子","authors":"Yibo Wang, Xiuqin Ma, Hongwu Qin, Huanling Sun, Weiyi Wei","doi":"10.1007/s40747-023-01203-3","DOIUrl":null,"url":null,"abstract":"Abstract Hesitant Fermatean fuzzy sets (HFFS) can characterize the membership degree (MD) and non-membership degree (NMD) of hesitant fuzzy elements in a broader range, which offers superior fuzzy data processing capabilities for addressing complex uncertainty issues. In this research, first, we present the definition of the hesitant Fermatean fuzzy Bonferroni mean operator (HFFBM). Further, with the basic operations of HFFS in Einstein t-norms, the definition and derivation process of the hesitant Fermatean fuzzy Einstein Bonferroni mean operator (HFFEBM) are given. In addition, considering how weights affect decision-making outcomes, the hesitant Fermatean fuzzy weighted Bonferroni mean (HFFWBM) operator and the hesitant Fermatean fuzzy Einstein weighted Bonferroni mean operator (HFFEWBM) are developed. Then, the properties of the operators are discussed. Based on HFFWBM and HFFEWBM operator, a new multi-attribute decision-making (MADM) approach is provided. Finally, we apply the proposed decision-making approach to the case of a depression diagnostic evaluation for three depressed patients. The three patients' diagnosis results confirmed the proposed method's validity and rationality. Through a series of comparative experiments and analyses, the proposed MADM method is an efficient solution for decision-making issues in the hesitant Fermatean fuzzy environment.","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"59 1","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hesitant Fermatean fuzzy Bonferroni mean operators for multi-attribute decision-making\",\"authors\":\"Yibo Wang, Xiuqin Ma, Hongwu Qin, Huanling Sun, Weiyi Wei\",\"doi\":\"10.1007/s40747-023-01203-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Hesitant Fermatean fuzzy sets (HFFS) can characterize the membership degree (MD) and non-membership degree (NMD) of hesitant fuzzy elements in a broader range, which offers superior fuzzy data processing capabilities for addressing complex uncertainty issues. In this research, first, we present the definition of the hesitant Fermatean fuzzy Bonferroni mean operator (HFFBM). Further, with the basic operations of HFFS in Einstein t-norms, the definition and derivation process of the hesitant Fermatean fuzzy Einstein Bonferroni mean operator (HFFEBM) are given. In addition, considering how weights affect decision-making outcomes, the hesitant Fermatean fuzzy weighted Bonferroni mean (HFFWBM) operator and the hesitant Fermatean fuzzy Einstein weighted Bonferroni mean operator (HFFEWBM) are developed. Then, the properties of the operators are discussed. Based on HFFWBM and HFFEWBM operator, a new multi-attribute decision-making (MADM) approach is provided. Finally, we apply the proposed decision-making approach to the case of a depression diagnostic evaluation for three depressed patients. The three patients' diagnosis results confirmed the proposed method's validity and rationality. Through a series of comparative experiments and analyses, the proposed MADM method is an efficient solution for decision-making issues in the hesitant Fermatean fuzzy environment.\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-023-01203-3\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40747-023-01203-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Hesitant Fermatean fuzzy Bonferroni mean operators for multi-attribute decision-making
Abstract Hesitant Fermatean fuzzy sets (HFFS) can characterize the membership degree (MD) and non-membership degree (NMD) of hesitant fuzzy elements in a broader range, which offers superior fuzzy data processing capabilities for addressing complex uncertainty issues. In this research, first, we present the definition of the hesitant Fermatean fuzzy Bonferroni mean operator (HFFBM). Further, with the basic operations of HFFS in Einstein t-norms, the definition and derivation process of the hesitant Fermatean fuzzy Einstein Bonferroni mean operator (HFFEBM) are given. In addition, considering how weights affect decision-making outcomes, the hesitant Fermatean fuzzy weighted Bonferroni mean (HFFWBM) operator and the hesitant Fermatean fuzzy Einstein weighted Bonferroni mean operator (HFFEWBM) are developed. Then, the properties of the operators are discussed. Based on HFFWBM and HFFEWBM operator, a new multi-attribute decision-making (MADM) approach is provided. Finally, we apply the proposed decision-making approach to the case of a depression diagnostic evaluation for three depressed patients. The three patients' diagnosis results confirmed the proposed method's validity and rationality. Through a series of comparative experiments and analyses, the proposed MADM method is an efficient solution for decision-making issues in the hesitant Fermatean fuzzy environment.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.