二聚体Ga前驱体在金属有机化学气相沉积氮化镓中的吸附机理

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS
Hankyu Kim, Miso Kim, Bumsang Kim, Bonggeun Shong
{"title":"二聚体Ga前驱体在金属有机化学气相沉积氮化镓中的吸附机理","authors":"Hankyu Kim, Miso Kim, Bumsang Kim, Bonggeun Shong","doi":"10.1116/6.0002966","DOIUrl":null,"url":null,"abstract":"Gallium nitride (GaN) has attracted significant interest as a next-generation semiconductor material with various potential applications. During metalorganic chemical vapor deposition (MOCVD) of GaN using trimethyl gallium (TMG) and NH3, dimeric precursors are produced by gas-phase reactions such as adduct formation or thermal decomposition. In this work, the surface adsorption reactions of monomeric and dimeric Ga molecules including TMG, [(CH3)2Ga(NH2)]2, and [(CH3)GaNH]2 on the GaN surface are investigated using density functional theory calculations. It is found that [(CH3)2Ga(NH2)]2 is the most predominant form among the various dimeric precursors under typical GaN MOCVD process conditions. Our results indicate that the dimeric [(CH3)GaNH]2 precursor, which is generated through the thermal decomposition of [(CH3)2Ga(NH2)]2, would have higher reactivity on the GaN surface. Our work provides critical insights that can inform the optimization of GaN MOCVD processes, leading to advancements in GaN-based high-performance semiconductors.","PeriodicalId":17490,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":"17 19","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption mechanism of dimeric Ga precursors in metalorganic chemical vapor deposition of gallium nitride\",\"authors\":\"Hankyu Kim, Miso Kim, Bumsang Kim, Bonggeun Shong\",\"doi\":\"10.1116/6.0002966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gallium nitride (GaN) has attracted significant interest as a next-generation semiconductor material with various potential applications. During metalorganic chemical vapor deposition (MOCVD) of GaN using trimethyl gallium (TMG) and NH3, dimeric precursors are produced by gas-phase reactions such as adduct formation or thermal decomposition. In this work, the surface adsorption reactions of monomeric and dimeric Ga molecules including TMG, [(CH3)2Ga(NH2)]2, and [(CH3)GaNH]2 on the GaN surface are investigated using density functional theory calculations. It is found that [(CH3)2Ga(NH2)]2 is the most predominant form among the various dimeric precursors under typical GaN MOCVD process conditions. Our results indicate that the dimeric [(CH3)GaNH]2 precursor, which is generated through the thermal decomposition of [(CH3)2Ga(NH2)]2, would have higher reactivity on the GaN surface. Our work provides critical insights that can inform the optimization of GaN MOCVD processes, leading to advancements in GaN-based high-performance semiconductors.\",\"PeriodicalId\":17490,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology A\",\"volume\":\"17 19\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0002966\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0002966","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

氮化镓(GaN)作为具有多种潜在应用前景的下一代半导体材料引起了人们的极大兴趣。在使用三甲基镓(TMG)和NH3的金属有机化学气相沉积(MOCVD) GaN过程中,二聚体前体通过气相反应如加合物形成或热分解产生。本文采用密度泛函理论计算方法,研究了TMG、[(CH3)2Ga(NH2)]2和[(CH3)GaNH]2等单、二聚体Ga分子在GaN表面的吸附反应。发现在典型的GaN MOCVD工艺条件下,[(CH3)2Ga(NH2)]2是各种二聚体前驱体中最主要的形式。结果表明,由[(CH3)2Ga(NH2)]2热分解生成的二聚体[(CH3)GaNH]2前驱体在GaN表面具有较高的反应活性。我们的工作提供了关键的见解,可以为GaN MOCVD工艺的优化提供信息,从而导致基于GaN的高性能半导体的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adsorption mechanism of dimeric Ga precursors in metalorganic chemical vapor deposition of gallium nitride
Gallium nitride (GaN) has attracted significant interest as a next-generation semiconductor material with various potential applications. During metalorganic chemical vapor deposition (MOCVD) of GaN using trimethyl gallium (TMG) and NH3, dimeric precursors are produced by gas-phase reactions such as adduct formation or thermal decomposition. In this work, the surface adsorption reactions of monomeric and dimeric Ga molecules including TMG, [(CH3)2Ga(NH2)]2, and [(CH3)GaNH]2 on the GaN surface are investigated using density functional theory calculations. It is found that [(CH3)2Ga(NH2)]2 is the most predominant form among the various dimeric precursors under typical GaN MOCVD process conditions. Our results indicate that the dimeric [(CH3)GaNH]2 precursor, which is generated through the thermal decomposition of [(CH3)2Ga(NH2)]2, would have higher reactivity on the GaN surface. Our work provides critical insights that can inform the optimization of GaN MOCVD processes, leading to advancements in GaN-based high-performance semiconductors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Vacuum Science & Technology A
Journal of Vacuum Science & Technology A 工程技术-材料科学:膜
CiteScore
5.10
自引率
10.30%
发文量
247
审稿时长
2.1 months
期刊介绍: Journal of Vacuum Science & Technology A publishes reports of original research, letters, and review articles that focus on fundamental scientific understanding of interfaces, surfaces, plasmas and thin films and on using this understanding to advance the state-of-the-art in various technological applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信