压力和氢气稀释对交流激发高压等离子体中甲烷分解动力学的影响

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL
Norleakvisoth Lim, Yu Wu, Michael J. Gordon
{"title":"压力和氢气稀释对交流激发高压等离子体中甲烷分解动力学的影响","authors":"Norleakvisoth Lim,&nbsp;Yu Wu,&nbsp;Michael J. Gordon","doi":"10.1007/s11090-023-10416-w","DOIUrl":null,"url":null,"abstract":"<div><p>The kinetics of methane decomposition in low frequency (60 Hz) AC arc plasmas was investigated using on-line mass spectrometry and optical emission spectroscopy (OES) in a batch reactor configuration at pressures up to 3 bar absolute. Plasma conversion of CH<sub>4</sub> results largely from thermal dissociation and was seen to follow first-order kinetics up to high conversions (&gt; 90%) without observing any rate impedance from reverse hydrocracking. H– and C-atom selectivities for H<sub>2</sub>, C<sub>2</sub>H<sub>2</sub>, and C<sub>2</sub>H<sub>4</sub> were 78% (1.56 mol H<sub>2</sub>/mol CH<sub>4</sub> reacted), 36% (0.18 mol C<sub>2</sub>H<sub>2</sub>/mol CH<sub>4</sub>), and 30% (0.15 mol C<sub>2</sub>H<sub>4</sub>/mol CH<sub>4</sub>), respectively, at 3 bar. In other experiments, H<sub>2</sub> diluent concentration played an important role in CH<sub>4</sub> dissociation and final product distributions; H abstraction reactions increased the rate of CH<sub>4</sub> decomposition at low H<sub>2</sub> (y<sub>H2</sub> &lt; 0.6) while high H<sub>2</sub> (y<sub>H2</sub> &gt; 0.6) impeded CH<sub>4</sub> decomposition due to hydrocracking of C<sub>2</sub> products. The rate of CH<sub>4</sub> dissociation was seen to increase with pressure, up to 0.11 mol/m<sup>3</sup>/s, and the specific energy requirement (SER) decreased with pressure to 365 kJ/mol CH<sub>4</sub> at 3 bar. The latter suggests that even higher operating pressures may improve the efficiency of plasma conversion of CH<sub>4</sub>, and ultimately that plasma pyrolysis may be a viable and energy efficient route to clean (turquoise) H<sub>2</sub> and further implementation of chemical process electrification.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Pressure and Hydrogen Dilution on the Kinetics of Methane Decomposition in AC-Excited, High Pressure Plasmas\",\"authors\":\"Norleakvisoth Lim,&nbsp;Yu Wu,&nbsp;Michael J. Gordon\",\"doi\":\"10.1007/s11090-023-10416-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The kinetics of methane decomposition in low frequency (60 Hz) AC arc plasmas was investigated using on-line mass spectrometry and optical emission spectroscopy (OES) in a batch reactor configuration at pressures up to 3 bar absolute. Plasma conversion of CH<sub>4</sub> results largely from thermal dissociation and was seen to follow first-order kinetics up to high conversions (&gt; 90%) without observing any rate impedance from reverse hydrocracking. H– and C-atom selectivities for H<sub>2</sub>, C<sub>2</sub>H<sub>2</sub>, and C<sub>2</sub>H<sub>4</sub> were 78% (1.56 mol H<sub>2</sub>/mol CH<sub>4</sub> reacted), 36% (0.18 mol C<sub>2</sub>H<sub>2</sub>/mol CH<sub>4</sub>), and 30% (0.15 mol C<sub>2</sub>H<sub>4</sub>/mol CH<sub>4</sub>), respectively, at 3 bar. In other experiments, H<sub>2</sub> diluent concentration played an important role in CH<sub>4</sub> dissociation and final product distributions; H abstraction reactions increased the rate of CH<sub>4</sub> decomposition at low H<sub>2</sub> (y<sub>H2</sub> &lt; 0.6) while high H<sub>2</sub> (y<sub>H2</sub> &gt; 0.6) impeded CH<sub>4</sub> decomposition due to hydrocracking of C<sub>2</sub> products. The rate of CH<sub>4</sub> dissociation was seen to increase with pressure, up to 0.11 mol/m<sup>3</sup>/s, and the specific energy requirement (SER) decreased with pressure to 365 kJ/mol CH<sub>4</sub> at 3 bar. The latter suggests that even higher operating pressures may improve the efficiency of plasma conversion of CH<sub>4</sub>, and ultimately that plasma pyrolysis may be a viable and energy efficient route to clean (turquoise) H<sub>2</sub> and further implementation of chemical process electrification.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-023-10416-w\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-023-10416-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用在线质谱法和光学发射光谱法(OES),在绝对压力高达 3 巴的间歇式反应器配置中研究了甲烷在低频(60 赫兹)交流电弧等离子体中的分解动力学。等离子体对 CH4 的转化主要源于热解离,并且在高转化率(90%)条件下遵循一阶动力学,没有观察到反向加氢裂化产生的任何速率阻抗。在 3 巴条件下,H2、C2H2 和 C2H4 的 H 原子和 C 原子选择性分别为 78%(1.56 摩尔 H2/摩尔 CH4 反应)、36%(0.18 摩尔 C2H2/摩尔 CH4)和 30%(0.15 摩尔 C2H4/摩尔 CH4)。在其他实验中,H2 稀释剂浓度对 CH4 的解离和最终产物的分布起着重要作用;在低 H2(yH2 < 0.6)条件下,H 抽取反应增加了 CH4 的分解速率,而高 H2(yH2 > 0.6)条件下,由于 C2 产物的加氢裂化,阻碍了 CH4 的分解。随着压力的升高,CH4 的解离率也随之升高,最高可达 0.11 mol/m3/s,而比能要求 (SER) 则随着压力的降低而降低,在 3 bar 时为 365 kJ/mol CH4。后者表明,即使更高的操作压力也可能提高等离子体转化 CH4 的效率,最终等离子体热解可能成为获得清洁(绿松石)H2 和进一步实施化学过程电气化的可行且节能的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Impact of Pressure and Hydrogen Dilution on the Kinetics of Methane Decomposition in AC-Excited, High Pressure Plasmas

Impact of Pressure and Hydrogen Dilution on the Kinetics of Methane Decomposition in AC-Excited, High Pressure Plasmas

The kinetics of methane decomposition in low frequency (60 Hz) AC arc plasmas was investigated using on-line mass spectrometry and optical emission spectroscopy (OES) in a batch reactor configuration at pressures up to 3 bar absolute. Plasma conversion of CH4 results largely from thermal dissociation and was seen to follow first-order kinetics up to high conversions (> 90%) without observing any rate impedance from reverse hydrocracking. H– and C-atom selectivities for H2, C2H2, and C2H4 were 78% (1.56 mol H2/mol CH4 reacted), 36% (0.18 mol C2H2/mol CH4), and 30% (0.15 mol C2H4/mol CH4), respectively, at 3 bar. In other experiments, H2 diluent concentration played an important role in CH4 dissociation and final product distributions; H abstraction reactions increased the rate of CH4 decomposition at low H2 (yH2 < 0.6) while high H2 (yH2 > 0.6) impeded CH4 decomposition due to hydrocracking of C2 products. The rate of CH4 dissociation was seen to increase with pressure, up to 0.11 mol/m3/s, and the specific energy requirement (SER) decreased with pressure to 365 kJ/mol CH4 at 3 bar. The latter suggests that even higher operating pressures may improve the efficiency of plasma conversion of CH4, and ultimately that plasma pyrolysis may be a viable and energy efficient route to clean (turquoise) H2 and further implementation of chemical process electrification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信