{"title":"GAGAN:用于半导体先进过程控制的全局注意力生成对抗网络","authors":"Hsiu-Hui Hsiao;Kung-Jeng Wang","doi":"10.1109/TSM.2023.3332630","DOIUrl":null,"url":null,"abstract":"This paper addresses the quality control of the photolithography process in the semiconductor industry. Overlay errors in the process seriously affect the wafer yield, and cause the wafer to be forced to rework and affect the production efficiency of the equipment. We examine the current state of its process control, develop a novel overlay predict model, and verify the prediction results. This study proposes a Global Attention Generative Adversarial Networks (GAGAN) model to precisely predict the overlay error for the feed-forward data of the front layer, which is used as the important information and process parameters for the advanced process control of the current layer. Experiment results on a semiconductor shop-floor confirms that our proposed method achieves high predictive performance while maintaining extensibility and visual quality.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 1","pages":"115-123"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GAGAN: Global Attention Generative Adversarial Networks for Semiconductor Advanced Process Control\",\"authors\":\"Hsiu-Hui Hsiao;Kung-Jeng Wang\",\"doi\":\"10.1109/TSM.2023.3332630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the quality control of the photolithography process in the semiconductor industry. Overlay errors in the process seriously affect the wafer yield, and cause the wafer to be forced to rework and affect the production efficiency of the equipment. We examine the current state of its process control, develop a novel overlay predict model, and verify the prediction results. This study proposes a Global Attention Generative Adversarial Networks (GAGAN) model to precisely predict the overlay error for the feed-forward data of the front layer, which is used as the important information and process parameters for the advanced process control of the current layer. Experiment results on a semiconductor shop-floor confirms that our proposed method achieves high predictive performance while maintaining extensibility and visual quality.\",\"PeriodicalId\":451,\"journal\":{\"name\":\"IEEE Transactions on Semiconductor Manufacturing\",\"volume\":\"37 1\",\"pages\":\"115-123\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Semiconductor Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10318212/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10318212/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
GAGAN: Global Attention Generative Adversarial Networks for Semiconductor Advanced Process Control
This paper addresses the quality control of the photolithography process in the semiconductor industry. Overlay errors in the process seriously affect the wafer yield, and cause the wafer to be forced to rework and affect the production efficiency of the equipment. We examine the current state of its process control, develop a novel overlay predict model, and verify the prediction results. This study proposes a Global Attention Generative Adversarial Networks (GAGAN) model to precisely predict the overlay error for the feed-forward data of the front layer, which is used as the important information and process parameters for the advanced process control of the current layer. Experiment results on a semiconductor shop-floor confirms that our proposed method achieves high predictive performance while maintaining extensibility and visual quality.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.