Olusola Samuel Jolayemi, Temiloluwa Olufunmilayo Alabi
{"title":"藜麦(Chenopodium quinoa野生)和虎坚果(Cyperus esculentus L.)有机加糖无麸质早餐的营养、理化和质量概况","authors":"Olusola Samuel Jolayemi, Temiloluwa Olufunmilayo Alabi","doi":"10.1186/s43014-023-00160-1","DOIUrl":null,"url":null,"abstract":"Abstract By formulating a breakfast meal from quinoa and tigernuts that is organically sweetened, this study aimed to synergistically utilize the natural bioactive compounds embedded in both foods. When compared to commercial sample, all formulations had higher protein and fat contents. The meals contained little starch, and most significantly, over 35% of this starch was non-digestible. The main minerals found in the meals were potassium (481.81—592.47 mg/100 g), phosphorus (231.75—257.20 mg/100 g), magnesium (152.34—176.29 mg/100 g), and calcium (257.45—266.61 mg/100 g, with the Na/K molar ratio < 1.0 advantageous for those with high blood pressure. Regarding overall phenol and flavonoid contents, the meals outperformed the commercial product with remarkable antioxidant capacities when tested against different assays (FRAP, ABTS, and DPPH). The meals' inhibitory capacities on both carbohydrate-hydrolyzing enzymes were noticeably higher than that of the commercial product. Regardless of the amount of quinoa or tigernuts in each blend, the inhibitory performance was satisfactory (α-amylase 26.98—60.18%; α -glucosidase 19.47—40.02%). Similarly, the chemical properties of the meals as influenced by its higher protein, fats, dietary fibre, and low sugar, modulated its functional properties in a unique way. In terms of sensory assessment, the panelists ranked the meals similar and sometimes above the commercial ones with respect to all the organoleptic parameters considered. Graphical Abstract A graphical representation of production, nutritional and functional characterization of stevia-sweetened breakfast meals from quinoa-tigernuts blends","PeriodicalId":12395,"journal":{"name":"Food Production, Processing and Nutrition","volume":"202 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nutritional, physicochemical and quality profiles of organically sweetened gluten-free breakfast meal from quinoa (Chenopodium quinoa Willd) and tigernuts (Cyperus esculentus L.)\",\"authors\":\"Olusola Samuel Jolayemi, Temiloluwa Olufunmilayo Alabi\",\"doi\":\"10.1186/s43014-023-00160-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract By formulating a breakfast meal from quinoa and tigernuts that is organically sweetened, this study aimed to synergistically utilize the natural bioactive compounds embedded in both foods. When compared to commercial sample, all formulations had higher protein and fat contents. The meals contained little starch, and most significantly, over 35% of this starch was non-digestible. The main minerals found in the meals were potassium (481.81—592.47 mg/100 g), phosphorus (231.75—257.20 mg/100 g), magnesium (152.34—176.29 mg/100 g), and calcium (257.45—266.61 mg/100 g, with the Na/K molar ratio < 1.0 advantageous for those with high blood pressure. Regarding overall phenol and flavonoid contents, the meals outperformed the commercial product with remarkable antioxidant capacities when tested against different assays (FRAP, ABTS, and DPPH). The meals' inhibitory capacities on both carbohydrate-hydrolyzing enzymes were noticeably higher than that of the commercial product. Regardless of the amount of quinoa or tigernuts in each blend, the inhibitory performance was satisfactory (α-amylase 26.98—60.18%; α -glucosidase 19.47—40.02%). Similarly, the chemical properties of the meals as influenced by its higher protein, fats, dietary fibre, and low sugar, modulated its functional properties in a unique way. In terms of sensory assessment, the panelists ranked the meals similar and sometimes above the commercial ones with respect to all the organoleptic parameters considered. Graphical Abstract A graphical representation of production, nutritional and functional characterization of stevia-sweetened breakfast meals from quinoa-tigernuts blends\",\"PeriodicalId\":12395,\"journal\":{\"name\":\"Food Production, Processing and Nutrition\",\"volume\":\"202 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Production, Processing and Nutrition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43014-023-00160-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Production, Processing and Nutrition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43014-023-00160-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Nutritional, physicochemical and quality profiles of organically sweetened gluten-free breakfast meal from quinoa (Chenopodium quinoa Willd) and tigernuts (Cyperus esculentus L.)
Abstract By formulating a breakfast meal from quinoa and tigernuts that is organically sweetened, this study aimed to synergistically utilize the natural bioactive compounds embedded in both foods. When compared to commercial sample, all formulations had higher protein and fat contents. The meals contained little starch, and most significantly, over 35% of this starch was non-digestible. The main minerals found in the meals were potassium (481.81—592.47 mg/100 g), phosphorus (231.75—257.20 mg/100 g), magnesium (152.34—176.29 mg/100 g), and calcium (257.45—266.61 mg/100 g, with the Na/K molar ratio < 1.0 advantageous for those with high blood pressure. Regarding overall phenol and flavonoid contents, the meals outperformed the commercial product with remarkable antioxidant capacities when tested against different assays (FRAP, ABTS, and DPPH). The meals' inhibitory capacities on both carbohydrate-hydrolyzing enzymes were noticeably higher than that of the commercial product. Regardless of the amount of quinoa or tigernuts in each blend, the inhibitory performance was satisfactory (α-amylase 26.98—60.18%; α -glucosidase 19.47—40.02%). Similarly, the chemical properties of the meals as influenced by its higher protein, fats, dietary fibre, and low sugar, modulated its functional properties in a unique way. In terms of sensory assessment, the panelists ranked the meals similar and sometimes above the commercial ones with respect to all the organoleptic parameters considered. Graphical Abstract A graphical representation of production, nutritional and functional characterization of stevia-sweetened breakfast meals from quinoa-tigernuts blends