{"title":"一种计算效率高的多层次数据序列回归插值算法","authors":"Tugba Akkaya Hocagil, Recai M. Yucel","doi":"10.1080/02664763.2023.2277669","DOIUrl":null,"url":null,"abstract":"ABSTRACTDue to the computational burden, especially in high-dimensional settings, sequential imputation may not be practical. In this paper, we adopt computationally advantageous methods by sampling the missing data from their perspective predictive distributions, which leads to significantly improved computation time in the class of variable-by-variable imputation algorithms. We assess the computational performance in a comprehensive simulation study. We then compare and contrast the performance of our algorithm with commonly used alternatives. The results show that our method has a significant advantage over the commonly used alternatives with respect to computational efficiency and inferential quality. Finally, we demonstrate our methods in a substantive problem aimed at investigating the effects of area-level behavioral, socioeconomic, and demographic characteristics on poor birth outcomes in New York State among singleton births.KEYWORDS: Sequential regression imputationmultilevel datacomputational efficiencyfast variable by variable imputationmultiple imputation by chained equations AcknowledgmentsWe thank Dr. Tabassum Insaf for providing assistance in accessing the New York State Vital Records Registry data.Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A computationally efficient sequential regression imputation algorithm for multilevel data\",\"authors\":\"Tugba Akkaya Hocagil, Recai M. Yucel\",\"doi\":\"10.1080/02664763.2023.2277669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTDue to the computational burden, especially in high-dimensional settings, sequential imputation may not be practical. In this paper, we adopt computationally advantageous methods by sampling the missing data from their perspective predictive distributions, which leads to significantly improved computation time in the class of variable-by-variable imputation algorithms. We assess the computational performance in a comprehensive simulation study. We then compare and contrast the performance of our algorithm with commonly used alternatives. The results show that our method has a significant advantage over the commonly used alternatives with respect to computational efficiency and inferential quality. Finally, we demonstrate our methods in a substantive problem aimed at investigating the effects of area-level behavioral, socioeconomic, and demographic characteristics on poor birth outcomes in New York State among singleton births.KEYWORDS: Sequential regression imputationmultilevel datacomputational efficiencyfast variable by variable imputationmultiple imputation by chained equations AcknowledgmentsWe thank Dr. Tabassum Insaf for providing assistance in accessing the New York State Vital Records Registry data.Disclosure statementNo potential conflict of interest was reported by the author(s).\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2023.2277669\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02664763.2023.2277669","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A computationally efficient sequential regression imputation algorithm for multilevel data
ABSTRACTDue to the computational burden, especially in high-dimensional settings, sequential imputation may not be practical. In this paper, we adopt computationally advantageous methods by sampling the missing data from their perspective predictive distributions, which leads to significantly improved computation time in the class of variable-by-variable imputation algorithms. We assess the computational performance in a comprehensive simulation study. We then compare and contrast the performance of our algorithm with commonly used alternatives. The results show that our method has a significant advantage over the commonly used alternatives with respect to computational efficiency and inferential quality. Finally, we demonstrate our methods in a substantive problem aimed at investigating the effects of area-level behavioral, socioeconomic, and demographic characteristics on poor birth outcomes in New York State among singleton births.KEYWORDS: Sequential regression imputationmultilevel datacomputational efficiencyfast variable by variable imputationmultiple imputation by chained equations AcknowledgmentsWe thank Dr. Tabassum Insaf for providing assistance in accessing the New York State Vital Records Registry data.Disclosure statementNo potential conflict of interest was reported by the author(s).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.