Xinyu Li, Wenzhen Liu, Gaoliang Wang, Samuel Sai-Ming Sun, Ling Yuan, Jingxue Wang
{"title":"通过基于 CRISPR/Cas9 的基因组编辑提高高粱蛋白质的消化率","authors":"Xinyu Li, Wenzhen Liu, Gaoliang Wang, Samuel Sai-Ming Sun, Ling Yuan, Jingxue Wang","doi":"10.1002/fes3.506","DOIUrl":null,"url":null,"abstract":"<p>Kafirins are the primary storage proteins in sorghum kernels that provide amino acids for seed germination. The highly proteolytic resistant γ- and β-kafirins form the cross-linked outer layers that encapsulate α-kafirins to generate protein bodies, resulting in poor digestibility of sorghum grains. The sorghum kafirins thus contribute to the poor quality of the kernels. The nutritional quality and digestibility of sorghum grains can be improved by reducing the contents of kafirin. γ-Kafirin is encoded by the <i>K2G</i> gene, which is located on sorghum chromosome 2. In this study, we used CRISPR/Cas9 gene editing to target the <i>K2G</i> gene to create new sorghum lines with reduced levels of kafirin. A guide RNA (sgRNA) was designed to introduce mutations in the CDS region that encodes the endoplasmic reticulum signal peptide of γ-kafirin. The p<i>K2G</i>sgRNA/Cas9 vector was transformed into sorghum using the pollen-mediated transformation method. Sequencing of the transformants showed that three out of 24 transgenic plants contain genetic mutations in the targeted region. Compared with the wildtype, the γ-kafirin contents of the mutant plants decreased by 12.75%–19.22%, and the protein digestibility of the mutant kernels increased by 26.91%–74.31% in raw flour. Although the grain weights remained comparable to those of the wildtype, the growth of the mutant plants was more vigorous as the mutant shoots grew taller and thicker compared with those of the wildtype. Our work advances the ability to improve the digestibility of an important crop. The resulting quality improvements can also be rapidly deployed for breeding and generation of transgene-free, improved cultivars of sorghum, a major crop worldwide.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.506","citationCount":"0","resultStr":"{\"title\":\"Improving digestibility of sorghum proteins by CRISPR/Cas9-based genome editing\",\"authors\":\"Xinyu Li, Wenzhen Liu, Gaoliang Wang, Samuel Sai-Ming Sun, Ling Yuan, Jingxue Wang\",\"doi\":\"10.1002/fes3.506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Kafirins are the primary storage proteins in sorghum kernels that provide amino acids for seed germination. The highly proteolytic resistant γ- and β-kafirins form the cross-linked outer layers that encapsulate α-kafirins to generate protein bodies, resulting in poor digestibility of sorghum grains. The sorghum kafirins thus contribute to the poor quality of the kernels. The nutritional quality and digestibility of sorghum grains can be improved by reducing the contents of kafirin. γ-Kafirin is encoded by the <i>K2G</i> gene, which is located on sorghum chromosome 2. In this study, we used CRISPR/Cas9 gene editing to target the <i>K2G</i> gene to create new sorghum lines with reduced levels of kafirin. A guide RNA (sgRNA) was designed to introduce mutations in the CDS region that encodes the endoplasmic reticulum signal peptide of γ-kafirin. The p<i>K2G</i>sgRNA/Cas9 vector was transformed into sorghum using the pollen-mediated transformation method. Sequencing of the transformants showed that three out of 24 transgenic plants contain genetic mutations in the targeted region. Compared with the wildtype, the γ-kafirin contents of the mutant plants decreased by 12.75%–19.22%, and the protein digestibility of the mutant kernels increased by 26.91%–74.31% in raw flour. Although the grain weights remained comparable to those of the wildtype, the growth of the mutant plants was more vigorous as the mutant shoots grew taller and thicker compared with those of the wildtype. Our work advances the ability to improve the digestibility of an important crop. The resulting quality improvements can also be rapidly deployed for breeding and generation of transgene-free, improved cultivars of sorghum, a major crop worldwide.</p>\",\"PeriodicalId\":54283,\"journal\":{\"name\":\"Food and Energy Security\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.506\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Energy Security\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fes3.506\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Energy Security","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fes3.506","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Improving digestibility of sorghum proteins by CRISPR/Cas9-based genome editing
Kafirins are the primary storage proteins in sorghum kernels that provide amino acids for seed germination. The highly proteolytic resistant γ- and β-kafirins form the cross-linked outer layers that encapsulate α-kafirins to generate protein bodies, resulting in poor digestibility of sorghum grains. The sorghum kafirins thus contribute to the poor quality of the kernels. The nutritional quality and digestibility of sorghum grains can be improved by reducing the contents of kafirin. γ-Kafirin is encoded by the K2G gene, which is located on sorghum chromosome 2. In this study, we used CRISPR/Cas9 gene editing to target the K2G gene to create new sorghum lines with reduced levels of kafirin. A guide RNA (sgRNA) was designed to introduce mutations in the CDS region that encodes the endoplasmic reticulum signal peptide of γ-kafirin. The pK2GsgRNA/Cas9 vector was transformed into sorghum using the pollen-mediated transformation method. Sequencing of the transformants showed that three out of 24 transgenic plants contain genetic mutations in the targeted region. Compared with the wildtype, the γ-kafirin contents of the mutant plants decreased by 12.75%–19.22%, and the protein digestibility of the mutant kernels increased by 26.91%–74.31% in raw flour. Although the grain weights remained comparable to those of the wildtype, the growth of the mutant plants was more vigorous as the mutant shoots grew taller and thicker compared with those of the wildtype. Our work advances the ability to improve the digestibility of an important crop. The resulting quality improvements can also be rapidly deployed for breeding and generation of transgene-free, improved cultivars of sorghum, a major crop worldwide.
期刊介绍:
Food and Energy Security seeks to publish high quality and high impact original research on agricultural crop and forest productivity to improve food and energy security. It actively seeks submissions from emerging countries with expanding agricultural research communities. Papers from China, other parts of Asia, India and South America are particularly welcome. The Editorial Board, headed by Editor-in-Chief Professor Martin Parry, is determined to make FES the leading publication in its sector and will be aiming for a top-ranking impact factor.
Primary research articles should report hypothesis driven investigations that provide new insights into mechanisms and processes that determine productivity and properties for exploitation. Review articles are welcome but they must be critical in approach and provide particularly novel and far reaching insights.
Food and Energy Security offers authors a forum for the discussion of the most important advances in this field and promotes an integrative approach of scientific disciplines. Papers must contribute substantially to the advancement of knowledge.
Examples of areas covered in Food and Energy Security include:
• Agronomy
• Biotechnological Approaches
• Breeding & Genetics
• Climate Change
• Quality and Composition
• Food Crops and Bioenergy Feedstocks
• Developmental, Physiology and Biochemistry
• Functional Genomics
• Molecular Biology
• Pest and Disease Management
• Post Harvest Biology
• Soil Science
• Systems Biology