{"title":"四甲基吡嗪和芍药苷复方制剂(TMP-PF)通过 NR4A1/VEGFR2 途径降低高脂血症并抑制斑块血管生成,从而缓解动脉粥样硬化的进展","authors":"","doi":"10.26599/FSHW.2022.9250212","DOIUrl":null,"url":null,"abstract":"<div><div>Atherosclerosis remains a great threat to human health worldwide. Previous studies found that tetramethylpyrazine (TMP) and paeoniflorin (PF) combination (TMP-PF) exerts anti-atherosclerotic effects <em>in vitro</em>. However, whether TMP-PF improves atherosclerosis <em>in vivo</em> needs further exploration. The present study aims to assess the anti-atherosclerotic properties of TMP-PF in ApoE<sup>-/-</sup> mice and explore the related molecule mechanisms. Results showed that TMP and high-dose TMP-PF decreased serum triglyceride and low-density lipoprotein cholesterol levels, suppressed vascular endothelial growth factor receptor 2 (VEGFR2) and nuclear receptor subfamily 4 group A member 1 (NR4A1) expression in aortic tissues, inhibited plaque angiogenesis, reduced plaque areas, and alleviated atherosclerosis in ApoE<sup>-/-</sup> mice. Also, TMP-PF exhibited a better modulation effect than TMP or PF alone. However, NR4A1 agonist abolished the anti-atherosclerotic effects of TMP-PF. In conclusion, TMP-PF was first found to alleviate atherosclerosis progression by reducing hyperlipemia and inhibiting plaque angiogenesis via the NR4A1/VEGFR2 pathway, indicating that TMP-PF had a positive effect on reducing hyperlipemia and attenuating atherosclerosis development.</div></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tetramethylpyrazine and paeoniflorin combination (TMP-PF) alleviates atherosclerosis progress by reducing hyperlipemia and inhibiting plaque angiogenesis via the NR4A1/VEGFR2 pathway\",\"authors\":\"\",\"doi\":\"10.26599/FSHW.2022.9250212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Atherosclerosis remains a great threat to human health worldwide. Previous studies found that tetramethylpyrazine (TMP) and paeoniflorin (PF) combination (TMP-PF) exerts anti-atherosclerotic effects <em>in vitro</em>. However, whether TMP-PF improves atherosclerosis <em>in vivo</em> needs further exploration. The present study aims to assess the anti-atherosclerotic properties of TMP-PF in ApoE<sup>-/-</sup> mice and explore the related molecule mechanisms. Results showed that TMP and high-dose TMP-PF decreased serum triglyceride and low-density lipoprotein cholesterol levels, suppressed vascular endothelial growth factor receptor 2 (VEGFR2) and nuclear receptor subfamily 4 group A member 1 (NR4A1) expression in aortic tissues, inhibited plaque angiogenesis, reduced plaque areas, and alleviated atherosclerosis in ApoE<sup>-/-</sup> mice. Also, TMP-PF exhibited a better modulation effect than TMP or PF alone. However, NR4A1 agonist abolished the anti-atherosclerotic effects of TMP-PF. In conclusion, TMP-PF was first found to alleviate atherosclerosis progression by reducing hyperlipemia and inhibiting plaque angiogenesis via the NR4A1/VEGFR2 pathway, indicating that TMP-PF had a positive effect on reducing hyperlipemia and attenuating atherosclerosis development.</div></div>\",\"PeriodicalId\":12406,\"journal\":{\"name\":\"Food Science and Human Wellness\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Human Wellness\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213453024002222\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Human Wellness","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213453024002222","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Tetramethylpyrazine and paeoniflorin combination (TMP-PF) alleviates atherosclerosis progress by reducing hyperlipemia and inhibiting plaque angiogenesis via the NR4A1/VEGFR2 pathway
Atherosclerosis remains a great threat to human health worldwide. Previous studies found that tetramethylpyrazine (TMP) and paeoniflorin (PF) combination (TMP-PF) exerts anti-atherosclerotic effects in vitro. However, whether TMP-PF improves atherosclerosis in vivo needs further exploration. The present study aims to assess the anti-atherosclerotic properties of TMP-PF in ApoE-/- mice and explore the related molecule mechanisms. Results showed that TMP and high-dose TMP-PF decreased serum triglyceride and low-density lipoprotein cholesterol levels, suppressed vascular endothelial growth factor receptor 2 (VEGFR2) and nuclear receptor subfamily 4 group A member 1 (NR4A1) expression in aortic tissues, inhibited plaque angiogenesis, reduced plaque areas, and alleviated atherosclerosis in ApoE-/- mice. Also, TMP-PF exhibited a better modulation effect than TMP or PF alone. However, NR4A1 agonist abolished the anti-atherosclerotic effects of TMP-PF. In conclusion, TMP-PF was first found to alleviate atherosclerosis progression by reducing hyperlipemia and inhibiting plaque angiogenesis via the NR4A1/VEGFR2 pathway, indicating that TMP-PF had a positive effect on reducing hyperlipemia and attenuating atherosclerosis development.
期刊介绍:
Food Science and Human Wellness is an international peer-reviewed journal that provides a forum for the dissemination of the latest scientific results in food science, nutriology, immunology and cross-field research. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. By their effort, it has been developed to promote the public awareness on diet, advocate healthy diet, reduce the harm caused by unreasonable dietary habit, and directs healthy food development for food industrial producers.