{"title":"超高温牛奶产品货架期质量劣变研究:核心微生物及相关特征","authors":"","doi":"10.26599/FSHW.2022.9250232","DOIUrl":null,"url":null,"abstract":"<div><div>Commercial sterility does not guarantee the sustained stability of ultrahigh temperature (UHT) milk over 6 months shelf life. We explore the microbiota presented in normal (SZ) and quality deteriorated UHT milk (QY and WY) products from the same brand. Based on high-throughput sequencing research results, 11 phyla and 54 genera were identified as dominant microbiota. <em>Pseudomonas, Streptococcus,</em> and <em>Acinetobacter</em> as core functional microbiota significantly influenced the UHT milk quality properties. Moreover, principal component analysis (PCA) and multivariate analyses were used to examine the quality characteristics, including 11 physicochemical parameters, 10 fatty acids, and 2 enzyme activities, in normal and quality deteriorated UHT milk. We found that the abundance of <em>Pseudomonas</em> increased in quality deteriorated milk (WY) and showed a significant positive correlation with heat-resistant protease content. <em>Acinetobacter</em> in quality deteriorated milk (QY) also considerably contributed to the content of heat-resistant lipase, which resulted in spoilage deterioration of UHT milk.</div></div>","PeriodicalId":12406,"journal":{"name":"Food Science and Human Wellness","volume":"13 5","pages":"Pages 2866-2875"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the quality deterioration of ultrahigh temperature milk products during shelf life: core microorganisms and related characteristics\",\"authors\":\"\",\"doi\":\"10.26599/FSHW.2022.9250232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Commercial sterility does not guarantee the sustained stability of ultrahigh temperature (UHT) milk over 6 months shelf life. We explore the microbiota presented in normal (SZ) and quality deteriorated UHT milk (QY and WY) products from the same brand. Based on high-throughput sequencing research results, 11 phyla and 54 genera were identified as dominant microbiota. <em>Pseudomonas, Streptococcus,</em> and <em>Acinetobacter</em> as core functional microbiota significantly influenced the UHT milk quality properties. Moreover, principal component analysis (PCA) and multivariate analyses were used to examine the quality characteristics, including 11 physicochemical parameters, 10 fatty acids, and 2 enzyme activities, in normal and quality deteriorated UHT milk. We found that the abundance of <em>Pseudomonas</em> increased in quality deteriorated milk (WY) and showed a significant positive correlation with heat-resistant protease content. <em>Acinetobacter</em> in quality deteriorated milk (QY) also considerably contributed to the content of heat-resistant lipase, which resulted in spoilage deterioration of UHT milk.</div></div>\",\"PeriodicalId\":12406,\"journal\":{\"name\":\"Food Science and Human Wellness\",\"volume\":\"13 5\",\"pages\":\"Pages 2866-2875\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Human Wellness\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213453024002155\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Human Wellness","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213453024002155","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Research on the quality deterioration of ultrahigh temperature milk products during shelf life: core microorganisms and related characteristics
Commercial sterility does not guarantee the sustained stability of ultrahigh temperature (UHT) milk over 6 months shelf life. We explore the microbiota presented in normal (SZ) and quality deteriorated UHT milk (QY and WY) products from the same brand. Based on high-throughput sequencing research results, 11 phyla and 54 genera were identified as dominant microbiota. Pseudomonas, Streptococcus, and Acinetobacter as core functional microbiota significantly influenced the UHT milk quality properties. Moreover, principal component analysis (PCA) and multivariate analyses were used to examine the quality characteristics, including 11 physicochemical parameters, 10 fatty acids, and 2 enzyme activities, in normal and quality deteriorated UHT milk. We found that the abundance of Pseudomonas increased in quality deteriorated milk (WY) and showed a significant positive correlation with heat-resistant protease content. Acinetobacter in quality deteriorated milk (QY) also considerably contributed to the content of heat-resistant lipase, which resulted in spoilage deterioration of UHT milk.
期刊介绍:
Food Science and Human Wellness is an international peer-reviewed journal that provides a forum for the dissemination of the latest scientific results in food science, nutriology, immunology and cross-field research. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. By their effort, it has been developed to promote the public awareness on diet, advocate healthy diet, reduce the harm caused by unreasonable dietary habit, and directs healthy food development for food industrial producers.