Nicolas Verzelen, Magalie Fromont, Matthieu Lerasle, Patricia Reynaud-Bouret
{"title":"最优变点检测和定位","authors":"Nicolas Verzelen, Magalie Fromont, Matthieu Lerasle, Patricia Reynaud-Bouret","doi":"10.1214/23-aos2297","DOIUrl":null,"url":null,"abstract":"Given a times series Y in Rn, with a piecewise constant mean and independent components, the twin problems of change-point detection and change-point localization, respectively amount to detecting the existence of times where the mean varies and estimating the positions of those change-points. In this work, we tightly characterize optimal rates for both problems and uncover the phase transition phenomenon from a global testing problem to a local estimation problem. Introducing a suitable definition of the energy of a change-point, we first establish in the single change-point setting that the optimal detection threshold is 2loglog(n). When the energy is just above the detection threshold, then the problem of localizing the change-point becomes purely parametric: it only depends on the difference in means and not on the position of the change-point anymore. Interestingly, for most change-point positions, including all those away from the endpoints of the time series, it is possible to detect and localize them at a much smaller energy level. In the multiple change-point setting, we establish the energy detection threshold and show similarly that the optimal localization error of a specific change-point becomes purely parametric. Along the way, tight minimax rates for Hausdorff and l 1 estimation losses of the vector of all change-points positions are also established. Two procedures achieving these optimal rates are introduced. The first one is a least-squares estimator with a new multiscale penalty that favours well spread change-points. The second one is a two-step multiscale post-processing procedure whose computational complexity can be as low as O(nlog(n)). Notably, these two procedures accommodate with the presence of possibly many low-energy and therefore undetectable change-points and are still able to detect and localize high-energy change-points even with the presence of those nuisance parameters.","PeriodicalId":8032,"journal":{"name":"Annals of Statistics","volume":"98 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Optimal change-point detection and localization\",\"authors\":\"Nicolas Verzelen, Magalie Fromont, Matthieu Lerasle, Patricia Reynaud-Bouret\",\"doi\":\"10.1214/23-aos2297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a times series Y in Rn, with a piecewise constant mean and independent components, the twin problems of change-point detection and change-point localization, respectively amount to detecting the existence of times where the mean varies and estimating the positions of those change-points. In this work, we tightly characterize optimal rates for both problems and uncover the phase transition phenomenon from a global testing problem to a local estimation problem. Introducing a suitable definition of the energy of a change-point, we first establish in the single change-point setting that the optimal detection threshold is 2loglog(n). When the energy is just above the detection threshold, then the problem of localizing the change-point becomes purely parametric: it only depends on the difference in means and not on the position of the change-point anymore. Interestingly, for most change-point positions, including all those away from the endpoints of the time series, it is possible to detect and localize them at a much smaller energy level. In the multiple change-point setting, we establish the energy detection threshold and show similarly that the optimal localization error of a specific change-point becomes purely parametric. Along the way, tight minimax rates for Hausdorff and l 1 estimation losses of the vector of all change-points positions are also established. Two procedures achieving these optimal rates are introduced. The first one is a least-squares estimator with a new multiscale penalty that favours well spread change-points. The second one is a two-step multiscale post-processing procedure whose computational complexity can be as low as O(nlog(n)). Notably, these two procedures accommodate with the presence of possibly many low-energy and therefore undetectable change-points and are still able to detect and localize high-energy change-points even with the presence of those nuisance parameters.\",\"PeriodicalId\":8032,\"journal\":{\"name\":\"Annals of Statistics\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-aos2297\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-aos2297","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Given a times series Y in Rn, with a piecewise constant mean and independent components, the twin problems of change-point detection and change-point localization, respectively amount to detecting the existence of times where the mean varies and estimating the positions of those change-points. In this work, we tightly characterize optimal rates for both problems and uncover the phase transition phenomenon from a global testing problem to a local estimation problem. Introducing a suitable definition of the energy of a change-point, we first establish in the single change-point setting that the optimal detection threshold is 2loglog(n). When the energy is just above the detection threshold, then the problem of localizing the change-point becomes purely parametric: it only depends on the difference in means and not on the position of the change-point anymore. Interestingly, for most change-point positions, including all those away from the endpoints of the time series, it is possible to detect and localize them at a much smaller energy level. In the multiple change-point setting, we establish the energy detection threshold and show similarly that the optimal localization error of a specific change-point becomes purely parametric. Along the way, tight minimax rates for Hausdorff and l 1 estimation losses of the vector of all change-points positions are also established. Two procedures achieving these optimal rates are introduced. The first one is a least-squares estimator with a new multiscale penalty that favours well spread change-points. The second one is a two-step multiscale post-processing procedure whose computational complexity can be as low as O(nlog(n)). Notably, these two procedures accommodate with the presence of possibly many low-energy and therefore undetectable change-points and are still able to detect and localize high-energy change-points even with the presence of those nuisance parameters.
期刊介绍:
The Annals of Statistics aim to publish research papers of highest quality reflecting the many facets of contemporary statistics. Primary emphasis is placed on importance and originality, not on formalism. The journal aims to cover all areas of statistics, especially mathematical statistics and applied & interdisciplinary statistics. Of course many of the best papers will touch on more than one of these general areas, because the discipline of statistics has deep roots in mathematics, and in substantive scientific fields.